
FeatureList-GSoC2024 - superseded by
GSoc-deliverables document which builds on this

1.​ Major feature of interest: We have implemented communities where in any user
can submit an article and get it reviewed and published.Each article has new
comment section under it(which can be seen publicly). On a different note, we want
to create private communities and people can add any article they want into their
community and discuss it (but the discussions done on this private communities
must not be visible to public and should be private only to particular community).

 This is the primary major feature we are looking to add right now. To give more
detail, communities on the site at present are all public. The possibility of private
communities means that the site can be used as a journal club or discussion group
or reading group, without any risk of comments being read by non-members. This is
a high-priority major update, since the site can be used in this form in order to iron
out bugs before its use as an open portal.

Anybody can set up a community and then invite people. For now, you can have all
communities be hidden, unless you get an invite… but one could also have 2
versions - one where you can find community info and request to join even without
an invite, and another where community is hidden completly. All this can be setup in
community options by community owner/moderator. Similarly, the names/IDs of the
articles being discussed in a community can either be public or private – it is fine to
keep it private for now, if simpler.

2.​ Major feature of interest: Add/improve the ability to pull up articles by DOI and/or
arXiv id… the goal here is that in add an article, right now, Pubmed title is the only
option. Pubmed ID should be possible, and a nice display of the pubmed article
(using the pubmed api) should follow. Similarly, the same can be done for arXiv
papers (using the arXiv webaddress or id as input, and the api to pull the data), and
for DOIs as well.

Zotero’s open-source code-base may help in this regard. In general, in future, we are
targeting a Zotero plugin to the site as well, so that comments can be made from
Zotero. We respect, like and look up to Zotero a lot. We don’t want to recreate Zotero
here, but aspects of how it pulls data automatically would be very useful !

3.​ Major: Create a unit-testing framework for the site, as it grows to have more than 1
contributor. This is becoming very important, because changes are likely to break the
site.

4.​ Major front end - articles: Both a facebook feed-style interface, and a gmail style
interface (with text below articles list on browser) are good designs for the “older”
generation, and others that are more familiar to the current generation could work
too. The present interface (for the list of articles one gets when you click on articles,
for for that matter communities etc) is not workable when there are a large number of
articles one is following.

(Note that for the front-end, the goal has always been that anybody can make their
own front-end to our site, we provide the API and back-end. So you are welcome to
implement other front-ends using other frameworks. These can be implemented as
mobile and desktop apps, and also as web-served frontends ! We are not trying to
compete (or restrict) in terms of front-end designs, of which there can be many.)

5.​ Frontend - mobile app. Check out if something like Ionic Capacitor can be used to
convert the React-based webpage into a mobile app. If not, is there another solution
? A mobile-app based front-end would be extremely useful. It would interact with the
API provided by the back-end. Partially done. Link to be added to webpage.

6.​ Frontend sidenav – minor (done): The frontend design has a sidenav which is
clickable, We want a fixed side navigation similar to instagram and must be
responsive on mobile devices.

7.​ Frontend – article page: he article page below has comments written the design is
not upto the mark, If you have any better designs.Try to enhance them.

8.​ Asynchronous tasks (e.g. emails, notifications): Reduce burden on server using
an asynchronous worker. Use Celery ?

9.​ Article chat page: Each article has a unique group chat page where any user can
share their views. Create a Group chat with join and leave feature from that group.
And user must be only notified of new messages if they have joined the group.

Think of this as a mix of Reddit and Wikipedia’s article chat. The discussion page of
an article can/will be frequently moderated, re-organized etc, like a Wikipedia article,
so that someone reading it is not lost in conversations of only transient value,but
actually gets a sense of serious community discussion, almost like via a comment in
a peer-reviewed journal. The chat/discussion then is like a Wikipedia chat… where
people can discuss the content of their contributions via comments, perhaps raise
isues, more of a free-for-all, anytihng of value here should be copied over to the
main discussion page - this is the idea.

10.​Comment URLS - Make a url which can be shared using comment ID, when
accessing url it must show the comment which it is associated to.

11.​Pages for Article Reviewers, Article Moderators: Design Pages for reviewers,
moderators to make it easier for them to track on which articles they are added as
moderators.

12.​Push Notifications for normal events on website: Create Push Notification alert
for events like when a user is added as reviewer,moderator,admin to particular
community.

When someone likes your comment under post or comments on your post. When a
official reviewer,official moderator comments on your article

13.​Redesign Pages related to Community Admin
14.​Documentation: Add link to SciCommons developer page (make one with link on

Scicommons front page).
15.​To be discussed: potentially using nextjs and/or Typescript; ci/cd using GitHub

actions and dockerization; using ShadCn instead of Material UI

Clarifications

1.​ This is a discussion of the relationship between articles and communities. Note that
what i write below is conceptual. it is not related to how jyothiswaroop has
implemented it.

main forum - each article is its own object. many communities can “take up” an
article, so an article has a property related to which communities are discussing/have
discussed it. unless a community is private, all its discussions are available on the
article page as well, but separated by community (and displayed as such if the
front-end chooses to). the article can also be available via the community page, but
the object is the same. so there is some overlap between communities and articles -
meaning, a community will have many articles, but almost always not all, and each
article may have 1 or more communities discussing it, but almost always not all
communities. makes sense ?

private communities are really islands. they can pick up articles and then their
discussion of that stays private. if they want to have public visibility that they exist,
and perhaps also which articles they are discussing, perhaps that option can be set
in settings. but if their discussion of the article is also public, then they are now a
public community (yes, there is also the difference that public community ratings
transfer to main forum, but we dont want to have public communities with isolated
ratings). so what distinguishes private communities is that their article discussion is
not public and any ratings from there do not go to main forum.

2.​ You can introduce fresh concepts and not just be limited to the features listed here -
we strongly encourage this. We suggest though, that before you spend significant
time coding something, unless it is for a front-end, you discuss the concept with us
after you have written up the concept, so that it is not time wasted if we were not
going to integrate it in the first place. However, for the front-end, as you can read
above, we welcome an ecosystem, and you are welcome to use our API to build an
app as you wish.

3.​ Please keep pulling/rebasing latest changes from main/master into your dev branch
to ensure that they are always up to date with the main branch. This workflow
ensures that you can make sure your pull requests do not conflict and it is easy for
the mentor to merge them after testing.

Other apps we like

1.​ Zotero. We really like and admire Zotero and would like to integrate with them via a
plugin for commenting, making comments visible within Zotero etc. But at a later
stage. Zotero also gives us interesting code for scraping and handling a wide variety
of article sources very smooth - cutting-edge, as far as I know.

2.​ Zulip. Zulip works very very well as a Slack alternative, and we use it exclusively for
our lab discussions. They are Python-based and use Django and Tornado. They do
not use websockets (for, I think, legacy reasons), but use a different Tornado-based
system that works very well. Perhaps we can learn something from their use of
Tornado as well for certain aspects of our site.

General notes (this is text from a document I wrote previously)

We will build a web portal that facilitates manuscript submission as well as an automated, free,
community-based, open-access, peer-review system where manuscripts, reviews and reviewers
will all receive evaluations from the community itself. Our open-source portal will allow a)
non-author controlled, double or single-blinded, pseudonymous pre- and post-publication peer
review, b) reviewers to get credit in various ways for reviewing, and c) quality ratings for
individual articles, reviews, authors and reviewers to emerge from collective community opinion.
The portal will consist of both a public space, as well as communities that consist of a group of
people interested in an area, with many, but not all of them approved to act as moderators and
official reviewers. This approval can be based on qualifications, a StackOverflow-like reputation
on the portal based on previous reviewing/moderating/comments, nomination by an existing
moderators/reviewer, reputation of previously authored work etc. However, any registered
participant can comment on any article or on any review/comment. Communities will perform a
role that overlaps somewhat with that of a journal in the traditional sense, though their reviewing
will be open and transparent, and their reviews can be commented upon by anyone, allowing for
open, robust post-publication discussion tied to the article unlike the closed, gatekeeping-based
traditional journal system of today. At submission, authors submit their manuscripts and some
meta-data (like field of research, related papers, etc) at the portal. As soon as they submit, the
manuscript will become visible. They can also provide a link to data/code submitted to

repositories like OSF, OpenNeuro, Dandi, C-BIG at McGill etc. At this point, the submitter has
the option to pick a list of communities to “submit” their manuscript to. Once a
moderator/reviewer of a community accepts the article, the system will randomly allocate
another moderator and reviewers from that community to post reviews and ratings of the article,
thus making sure that these identified reviewers are not hand-picked by the authors (though
everyone with privileges can add reviews and ratings). It is possible that multiple communities
may take up an article – all these reviews and comments will appear alongside the article, which
will continue to be associated with its original public record. Authors can respond to feedback,
post updated versions of their article, and a moderator or a team may manage the discussion,
summarizing and collating threads as needed. Readers and viewers can filter feedback based
on different criteria in order to only see reviews, ratings and article reputation from some
selected group of interest. Importantly, though all participants have to identify themselves to the
portal (at the time of registration via a verification process), all activity on the site can be done
pseudonymously with the system assigning random handles for a given reviewer for each
article, but keeping track of their activity and earned reputation. This way, credit (and potentially,
discredit) is earned for activity on the portal, but reviewing can be done ethically, objectively and
fearlessly. Finally, we note that if an article is not picked up by any community, it continues to
live in the public space and can be reviewed/commented on by anyone – being endorsed by a
community may only be needed for indexing in portals like Pubmed under the current rules. Our
system also eliminates the current wasteful and frustrating process of sequentially preparing
and submitting a manuscript to different journals/publishers until it finds a home.

	FeatureList-GSoC2024 - superseded by GSoc-deliverables document which builds on this

