Heating Curve EXTRA Practice

Name:

Chemistry

Date: _____ Hour: ____

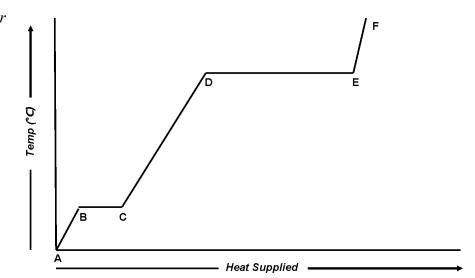
The organic compound acetone is a principal ingredient in most nail polish removers. Here are some of acetone's physical properties:

- molecular formula of C₃H₆O

- freezing point of -95.2 °C

- ΔH_{fus} +5.72 kJ/mol

-
$$C_{acetone} = 1.00 \text{ J/g} \times {}^{\circ}\text{C}$$


- boiling point of 56.4 °C

- ΔH_{vap} is + 29.1 kJ/mol

Using the information above, answer the following questions regarding acetone's heating curve graph.

1) What temperature is acetone at when it is at location **B**?

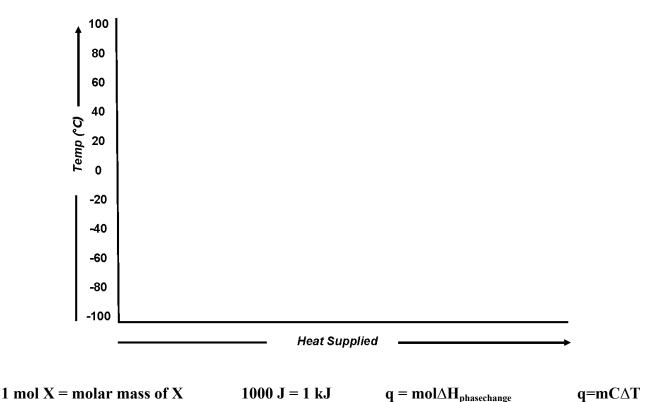
2) What temperature is acetone at when it is at location **D**?

3) The temperature of acetone is not changing from location **B** to **C**, but heat is still being added. Explain.

4) What states(s) of matter exist between **A** and **B**?

5) What states(s) of matter exist between **D** and **E**?

6) When going from point B to C, what is the name/symbol of the enthalpy?


7) When going from point C to B, what is the name/symbol of the enthalpy?

8) When going from point D to E, what is the name/symbol of the enthalpy?

9) When going from point E to D, what is the name/symbol of the enthalpy?

10) Suppose you had 10.0 g of both liquid water and liquid acetone. Which would be easier to vaporize? The ΔH_{vap} for H_2O is 40.7 kJ/mol. Explain your reasoning.

11) Redraw acetone's heating curve graph by accurately representing its freezing and boiling points.

12) Using the heating curve graph from #11, determine how much heat energy, in kJ, must be added to 20.0g of acetone at -100.0°C to raise its temperature to 100.0°C. Recall that 1 kJ = 1000 J. A complete answer will show all work, proper units, and be rounded according to the rules of significant figures.