
This is no longer the latest draft. Please see draft 2.

PEP: 9999

 <!-- TODO: Obtain PEP number -->

Title: TypeForm: Type Hint for a Type Expression

Author: David Foster <david at dafoster.net>

Sponsor: Jelle Zijlstra <jelle.zijlstra at gmail.com>

Discussions-To: Discourse thread

Status: Draft

Type: Standards Track

Content-Type: text/x-rst

 <!-- TODO: Convert from Markdown to RST -->

Created: 21-Dec-2020

Python-Version: 3.14

 <!-- NOTE: 3.13 feature freeze is 2024-05-07 -->

Post-History: 24-Jan-2021, 28-Jan-2021, 04-Feb-2021, 14-Feb-2021, 19-Apr-2024

Abstract

========

PEP 484 defines the notation `Type[C]` where `C` is a class, to refer to a class object

that is a subtype of `C`. It explicitly does not allow `Type[C]` to refer to typing

special forms such as the runtime object `Optional[str]` even if `C` is an unbounded

`TypeVar`. [^type-c] In cases where that restriction is unwanted, this PEP proposes a new

notation `TypeForm[T]` where `T` is a type, to refer to a either a class object or some

other typing special form that is a subtype of `T`, allowing any kind of type expression

to be referenced.

This PEP makes no Python grammar changes. Correct usage of `TypeForm[]` is intended to be

enforced only by static type checkers and need not be enforced by Python itself at

runtime.

Motivation

==========

The introduction of `TypeForm` allows new kinds of metaprogramming functions that operate

on typing special forms to be type-annotated and understood by typecheckers.

For example, here is a function that checks whether a value is assignable to a variable

of a particular type, and if so returns the original value:


``` 

def trycast[T](form: TypeForm[T], value: object) -> Optional[T]: ... 

``` 


https://docs.google.com/document/d/1PRvl3uKE-BxvmyFO3Ic4fZDpgW2fOU58aYh3LJ3zLpk/edit
https://discuss.python.org/t/typeform-spelling-for-a-type-annotation-object-at-runtime/51435
https://discuss.python.org/t/typeform-spelling-for-a-type-annotation-object-at-runtime/51435
https://www.python.org/dev/peps/pep-0484/#the-type-of-class-objects
https://discuss.python.org/t/basic-terminology-for-types-and-type-forms/46741/39

The use of `TypeForm[]` and the type variable `T` enable the return type of this function

to be influenced by a `form` value passed at runtime, which is quite powerful.

Here is another function that checks whether a value is assignable to a variable of a

particular type, and if so returns True (as a special `TypeIs[]` bool [^TypeIsPep]):


``` 

def isassignable[T](value: object, form: TypeForm[T]) -> TypeIs[T]: ... 

``` 


The use of `TypeForm[]` and `TypeIs[]` together enables typecheckers to narrow the return

type appropriately depending on what form is passed in:


``` 

request_json: object = ... 

if isassignable(request_json, Shape): 

    assert_type(request_json, Shape)  # type is narrowed! 

``` 


That `isassignable` function enables a kind of enhanced `isinstance` check which is

useful for [checking whether a value decoded from JSON conforms to a particular

structure] of nested `TypedDict`s, `List`s, `Optional`s, `Literal`s, and other types.

This kind of check was alluded to in PEP 589[^typeddict-no-isinstance] but could not be

implemented at the time without a notation similar to `TypeForm[]`.

Why can't `Type` be used?

One might think you could define the example functions above to take a `Type[T]` - which

is syntax that already exists - rather than a `TypeForm[T]`. However if you were to do

that then certain typing special forms like `Optional[str]` - which are not class objects

and therefore not `type`s at runtime - would be rejected:


``` 

# uses a Type[T] parameter rather than a TypeForm[T] 

def trycast_type[T](form: Type[T], value: object) -> Optional[T]: ... 

 

trycast_type(str, 'hi')  # ok; str is a Type 

trycast_type(Optional[str], 'hi')  # ERROR; Optional[str] is not a Type 

trycast_type(Union[str, int], 'hi')  # ERROR; Union[str, int] is not a Type 

trycast_type(MyTypedDict, dict(value='hi'))  # questionable; accepted by mypy 1.9.0 

``` 


To solve that problem `Type` could be widened to include the additional values allowed by

`TypeForm`. However doing so would lose `Type`'s current ability to spell a class object

which always supports instantiation and `isinstance` checks, unlike arbitrary typing

special forms. Therefore `TypeForm` is proposed as new notation instead.

https://www.python.org/dev/peps/pep-0742/
https://mail.python.org/archives/list/typing-sig@python.org/thread/I5ZOQICTJCENTCDPHLZR7NT42QJ43GP4/
https://mail.python.org/archives/list/typing-sig@python.org/thread/I5ZOQICTJCENTCDPHLZR7NT42QJ43GP4/
https://www.python.org/dev/peps/pep-0589/#using-typeddict-types

For a longer explanation of why we don't just widen `Type[T]` to accept all typing

special forms, see §"Widen Type[T] to support all typing special forms".

Common kinds of functions that would benefit from TypeForm

--

A survey of various Python libraries revealed a few kinds of commonly defined functions

which would benefit from `TypeForm[]`:

* Assignability checkers:

 * Returns whether a value is assignable to a type-form.

 If so then also narrows the type of the value to match the type-form.

 * Pattern 1: `def isassignable[T](value: object, form: TypeForm[T]) -> TypeIs[T]`

 * Pattern 2: `def ismatch[T](value: object, form: TypeForm[T]) -> TypeGuard[T]`

 * Examples: beartype.is_bearable, trycast.isassignable, typeguard.check_type,

 xdsl.isa

* Converters:

 * If a value is assignable to (or coercible to) a type-form then

 returns the value narrowed to (or coerced to) that form.

 Otherwise raises an exception.

 * Pattern 1: `def convert[T](value: object, form: TypeForm[T]) -> T`

 * Examples: cattrs.BaseConverter.structure, trycast.checkcast,

 typedload.load

 * Pattern 2:

      ``` 

      class Converter[T](Generic[T]): 

          def __init__(self, form: TypeForm[T]) -> None: ... 

          def convert(self, value: object) -> T: ... 

      ``` 

 * Examples: pydantic.TypeAdapter(T).validate_python,

 mashumaro.JSONDecoder(T).decode

* Typed field definitions:

 * Pattern:

      ``` 

      class Field: 

          value_type: TypeForm[T] 

      ``` 

 * Examples: attrs.make_class, dataclasses.make_dataclass, openapify

The survey also identified some introspection functions that take forms (both type-forms

and annotation-forms) as input using plain `object`s which would *not* gain functionality

by marking those inputs as `TypeForm[]`:

* General i​ntrospection operations:

https://github.com/python/mypy/issues/9773#issuecomment-2017998886
https://github.com/beartype/beartype/issues/255
https://github.com/davidfstr/trycast?tab=readme-ov-file#isassignable-api
https://typeguard.readthedocs.io/en/latest/api.html#typeguard.check_type
https://github.com/xdslproject/xdsl/blob/ac12c9ab0d64618475efb98d1d197bdd79f593c3/xdsl/utils/hints.py#L23
https://github.com/python-attrs/cattrs/blob/5f5c11627a7f67a23d6212bc7df9f96243c62dc5/src/cattrs/converters.py#L332-L334
https://github.com/davidfstr/trycast#checkcast-api
https://ltworf.github.io/typedload/
https://stackoverflow.com/a/61021183/604063
https://github.com/Fatal1ty/mashumaro?tab=readme-ov-file#usage-example
https://www.attrs.org/en/stable/api.html#attrs.make_class
https://github.com/python/typeshed/issues/11653
https://github.com/Fatal1ty/openapify/blob/c8d968c7c9c8fd7d4888bd2ddbe18ffd1469f3ca/openapify/core/models.py#L16

 * Pattern: `def get_form_info(maybe_form: object) -> ...`

 * Examples: typing.{get_origin, get_args},

 typing_inspect.{is_*_type, get_origin, get_parameters}

There are also some introspection functions that take type-forms as input and return

complex values based on those forms. Such functions would require additional syntax to

fully support which is not proposed in this PEP:

* Typed lookup operations:

 * Takes a sequence of type-forms and returns a tuple of instances of those forms.

 * Pattern: `def get_instances(forms: *TypeForm[T]) -> Tuple[*T]`

 * Examples: svcs.svcs_from(...).get(...)

 * Workaround: Use overloads like:

 * ```

 @overload

 def get_instances(t1: TypeForm[T1]) -> Tuple[T1]: ...

 @overload

 def get_instances(t1: TypeForm[T1], t2: TypeForm[T2]) -> Tuple[T1, T2]: ...

 # (... repeat up to tuples of length 7 or so ...)

          ``` 

 

 

Specification 

============= 

 

A type-form represents a `type` object or a special typing form such as `Optional[str]`, 

`Union[int, str]`, or `MyTypedDict`. A type-form type is written as `TypeForm[T]` where 

`T` is a type or a type variable. It can also be written without brackets as just 

`TypeForm`, which is treated as shorthand for `TypeForm[Any]`. 

 

 

Using TypeForms 

--------------- 

 

TypeForm types may be used as function parameter types, return types, and variable types: 

 

``` 

def is_union_type(form: TypeForm) -> bool: ... # parameter type

``` 

 

``` 

def union_of[S, T](s: TypeForm[S], t: TypeForm[T]) \

 -> TypeForm[Union[S, T]]: ... # return type

``` 

 

``` 

STR_TYPE: TypeForm[str] = str # variable type

``` 

https://docs.python.org/3/library/typing.html#typing.get_origin
https://docs.python.org/3/library/typing.html#typing.get_args
https://github.com/ilevkivskyi/typing_inspect?tab=readme-ov-file#readme
https://github.com/hynek/svcs#readme


 

Note however that an *unannotated* variable assigned a TypeForm literal will not be 

inferred to be of TypeForm type by typecheckers because PEP 484 [^type-alias-syntax] 

reserves that syntax for defining type aliases: 

 

``` 

STR_TYPE = str # OOPS; treated as a type alias!

``` 

 

If you want a typechecker to recognize a TypeForm literal in a bare assignment you'll 

need to explicitly declare the assignment-target as having `TypeForm` type: 

 

``` 

STR_TYPE: TypeForm[str] = str

``` 

 

``` 

STR_TYPE = str # type: TypeForm[str] # the type comment is significant

``` 

 

``` 

STR_TYPE: TypeForm[str]

STR_TYPE = str

``` 

 

 

TypeForm Values 

--------------- 

 

A variable of type `TypeForm[T]` where `T` is a type, may only be assigned a class object 

or special form which is valid in *all* of the following locations: 

 

* the right-hand-side of a variable declaration, 

 

  ``` 

 value: *form*

  ``` 

 

* the right-hand-side of a parameter declaration, 

 

  ``` 

 def some_func(value: *form*):

  ``` 

 

* the return type of a function: 

 

  ``` 

 def some_func() -> *form*:

https://www.python.org/dev/peps/pep-0484/#type-aliases


  ``` 

 

and which is a subtype of `T`. 

 

A runtime object that is valid in only some but not all of the above locations, like 

`Final[*form*]` (valid only in a variable declaration) or `TypeIs[*form*]` (valid only in 

a return type), is considered to be an "annotation form" but not a "type form". 

 

Example of type-form values include: 

 

* type objects like `int`, `str`, `object`, and `FooClass` 

* generic collections like `List`, `List[int]`, `Dict`, or `Dict[K, V]` 

* callables like `Callable`, `Callable[[Arg1Type, Arg2Type], ReturnType]`, `Callable[..., 

ReturnType]` 

* union forms like `int | str`, `Union[int, str]`, `Optional[str]`, or `Never` 

* literal forms like `Literal['r', 'rb', 'w', 'wb']` 

* type variables like `T` or `AnyStr` 

* annotated types like `Annotated[int, ValueRange(-10, 5)]` 

* type aliases like `Vector` (where `Vector = list[float]`) 

* the `Any` form 

* the `Type` and `Type[C]` forms 

* the `TypeForm` and `TypeForm[T]` forms 

* string literals that spell one of the above values, like `"Optional[str]"` 

 

Incomplete forms like a bare `Optional` or `Union` which do not spell a type are not 

type-form values. 

 

 

Forward References 

'''''''''''''''''' 

 

Type-form values may contain string-based forward references. These forward references 

are normalized at runtime to be `ForwardRef` instances: [^forward-ref-normalization] 

 

``` 

>>> IntTree = list[typing.Union[int, 'IntTree']]

>>> IntTree

list[typing.Union[int, ForwardRef('IntTree')]]

``` 

 

Therefore `ForwardRef` instances, being equivalent to string-based forward references, 

are also considered to be type-forms: 

 

``` 

IntTreeRef: TypeForm = ForwardRef('IntTree') # OK

``` 

 



[^forward-ref-normalization]: Special forms at runtime normalize string arguments to 

`ForwardRef` instances using the `typing._type_check()` and `typing._type_convert()` 

internal helper functions, as of Python 3.12. Runtime typecheckers may wish to implement 

similar functions when working with string-based forward references. 

 

 

Stringified TypeForms 

''''''''''''''''''''' 

 

A type-form value may itself be a string-based forward reference: 

 

``` 

IntTreeRef: TypeForm = 'IntTree' # OK

``` 

 

However the string itself must spell a valid type to be considered a type-form: 

 

``` 

BadUnion1: TypeForm = Union # ERROR: does not spell a type

BadUnion2: TypeForm = 'Union' # ERROR: does not spell a type

``` 

 

 

Subtyping 

--------- 

 

Whether a TypeForm value can be assigned from one variable to another is determined by 

the following rules for the is-subtype-of and is-consistent-with relationships: 

[^type-consistency] 

 

TypeForm[] is covariant in its argument type, just like Type[]: 

 

* `TypeForm[T1]` is a subtype of `TypeForm[T2]` iff `T1` is a subtype of `T2`. 

* `TypeForm[C1]` is a subtype of `Type[C2]` iff `C1` is a subtype of `C2`. 

* `Type[C1]` is a subtype of `TypeForm[C2]` iff `C1` is a subtype of `C2`. 

 

A plain Type can be assigned to a plain TypeForm but not the other way around: 

 

* `Type[Any]` is a subtype of `TypeForm[Any]`. (But not the other way around.) 

 

TypeForm[] is a kind of object, just like Type[]: 

 

* `TypeForm[T]` for any `T` is a subtype of `object`. 

 

 

Interactions with Type[] and type variables 

------------------------------------------- 

https://www.python.org/dev/peps/pep-0483/#summary-of-gradual-typing


Both TypeForm[] and Type[] can be used to constrain the same type variable within the 

same function definition: 

 

``` 

def as_type[T](form: TypeForm[T]) -> Type[T] | None:

 return form if isinstance(form, type) else None

``` 

 

``` 

def as_instance[T](form: TypeForm[T]) -> T | None:

 return form() if isinstance(form, type) else None

``` 

 

 

Interactions with TypeIs[], TypeGuard[], and type variables 

----------------------------------------------------------- 

A type variable constrained by TypeForm[] can also be used by a TypeIs[] within the same 

function definition: 

 

``` 

def isassignable[T](value: object, form: TypeForm[T]) -> TypeIs[T]: ...

count: int | str = ...

if isassignable(count, int):

 assert_type(count, int)

else:

 assert_type(count, str)

``` 

 

or by a TypeGuard[] within the same function definition: 

 

``` 

def isdefault[T](value: object, form: TypeForm[T]) -> TypeGuard[T]:

 return (value == type()) if isinstance(form, type) else False

value: int | str = ''

if isdefault(value, int):

 assert_type(value, int)

 assert 0 == value

elif isdefault(value, str):

 assert_type(value, str)

 assert '' == value

else:

 assert_type(value, int | str)

``` 

 

 

Interactions with Annotated[] and type variables 



------------------------------------------------ 

Annotated[] forms preserve their metadata at runtime: 

 

``` 

>>> ValueRange: TypeAlias = slice

>>> PositiveInt: TypeAlias = Annotated[int, ValueRange(1, float('inf'))]

>>> PositiveInt

typing.Annotated[int, slice(1, inf, None)] # NOT: int

``` 

 

However Annotated[] forms need not preserve their metadata at typechecking-time: 

 

``` 

count: PositiveInt = 1

assert_type(count, int) # NOT: Annotated[int, ValueRange(1, float('inf'))]

``` 

 

In particular when an Annotated[] argument is passed to a TypeForm[] parameter 

constraining a type variable that is also used by a TypeIs[] or TypeGuard[], the metadata 

need not be maintained as part of the type inferred by a typechecker: 

 

``` 

Similar to isassignable(), but accepts Annotated[] forms describing constraints

def ismatch[T](value: object, form: TypeForm[T]) -> TypeGuard[T]: ...

count: int | str = -1

if ismatch(count, PositiveInt):

 assert_type(count, int) # NOT: Annotated[int, ValueRange(1, float('inf'))]

else:

 assert_type(count, int | str)

``` 

 

 

Backwards Compatibility 

======================= 

 

No backward incompatible changes are made by this PEP. 

 

 

Reference Implementation 

======================== 

 

The following will be true when [mypy#9773] is implemented: 

 

    The mypy type checker supports `TypeForm` types. A reference implementation of the 

runtime component is provided in the `typing_extensions` module. 

 

 

https://github.com/python/mypy/issues/9773


Rejected Ideas 

============== 

 

Widen Type[T] to support all typing special forms 

------------------------------------------------- 

 

`Type` was [designed] to only be used to describe class objects. A class object can 

always be instantiated by calling it and can always be used as the second argument of 

`isinstance()`. 

 

`TypeForm` on the other hand is typically introspected by the user in some way, is not 

necessarily directly instantiable, and is not necessarily directly usable in a regular 

`isinstance()` check. 

 

It would be possible to widen `Type` to include the additional values allowed by 

`TypeForm` but it would reduce clarity about the user's intentions when working with a 

`Type`. Different concepts and usage patterns; different spellings. 

 

 

Accept arbitrary annotation-forms 

--------------------------------- 

 

Certain special forms can be used in *some* but not *all* annotation contexts: 

 

For example TypeIs[] and TypeGuard[] can be used as a return type of a function but not 

as a variable type or a parameter type: 

 

``` 

def is_positive_int(value: object) -> TypeGuard[int]: ... # OK

def nonsense(value: TypeGuard[int]): ... # ERROR: TypeGuard[] not meaningful here

exotic_bool: TypeGuard[int] # ERROR: TypeGuard[] not meaningful here

``` 

 

For example Final[] can be used as a variable type but not as a parameter type or a 

return type: 

 

``` 

some_const: Final[str] = ... # OK

def foo(not_reassignable: Final[object]): ... # ERROR: Final[] not allowed here

def nonsense() -> Final[object]: ... # ERROR: Final[] not meaningful here

``` 

 

`TypeForm[T]` does not allow matching such annotation-forms which are not type-forms 

because it is not clear how a type variable in position `T` should be constrained: 

https://mail.python.org/archives/list/typing-sig@python.org/message/D5FHORQVPHX3BHUDGF3A3TBZURBXLPHD/


 

``` 

def ismatch[T](value: object, form: TypeForm[T]) -> TypeGuard[T]: ...

some_value = ...

if ismatch(some_value, TypeGuard[int]): # ERROR: TypeGuard[int] is not a TypeForm

 reveal_type(some_value) # ? NOT TypeGuard[int], because invalid for a variable

def foo(some_arg):

 if ismatch(some_arg, Final[int]): # ERROR: Final[int] is not a TypeForm

 reveal_type(some_arg) # ? NOT Final[int], because invalid for a parameter

``` 

 

Functions that wish to operate on *all* kinds of annotation-forms, including those that 

are not type-forms, can continue to accept such forms as `object` parameters, as they 

must do so today: 

 

* typing.py, from the standard library: 

    * `def get_origin(maybe_annotation_form: object) -> object: ...` 

        * Accepts type-forms like `list[int]`, annotation-forms like `Final[int]`,  

          incomplete forms like `Union`, and non-forms like `1`. 

        * Returns type-forms like `list`, annotation-forms like `Final`,  

          incomplete forms like `Union`, and `None`. 

    * `def get_args(maybe_annotation_form: object) -> tuple[object, ...]: ...` 

        * Accepts type-forms like `list[int]`, annotation-forms like `Final[int]`,  

          incomplete forms like `Union`, and non-forms like `1`. 

        * Returns a tuple containing type-forms like `list` and  

          non-forms like `'annotated_metadata'` (from inside `Annotated[]` forms). 

 

 

Copyright 

========= 

 

This document is placed in the public domain or under the 

CC0-1.0-Universal license, whichever is more permissive. 

 

 

 

.. 

   Local Variables: 

   mode: indented-text 

   indent-tabs-mode: nil 

   sentence-end-double-space: t 

   fill-column: 70 

   coding: utf-8 

   End: 

 


