This is no longer the latest draft. Please see draft 2.

PEP: 9999

<!-- TODO: Obtain PEP number -->
Title: TypeForm: Type Hint for a Type Expression
Author: David Foster <david at dafoster.net>
Sponsor: Jelle Zijlstra <jelle.zijlstra at gmail.com>
Discussions-To: Discourse thread
Status: Draft
Type: Standards Track
Content-Type: text/x-rst

<!-- TODO: Convert from Markdown to RST -->
Created: 21-Dec-2020
Python-Version: 3.14

<!-- NOTE: 3.13 feature freeze is 2024-05-07 -->
Post-History: 24-Jan-2021, 28-Jan-2021, ©4-Feb-2021, 14-Feb-2021, 19-Apr-2024

Abstract

PEP 484 defines the notation "Type[C] where "C 1is a class, to refer to a class object
that is a subtype of "C . It explicitly does not allow "Type[C] to refer to typing
special forms such as the runtime object “Optional[str] even if "C° is an unbounded
“TypeVar™ . [“type-c] In cases where that restriction is unwanted, this PEP proposes a new
notation ~TypeForm[T] where T is a type, to refer to a either a class object or some
other typing special form that is a subtype of "T°, allowing any kind of type expression
to be referenced.

This PEP makes no Python grammar changes. Correct usage of “TypeForm[] is intended to be
enforced only by static type checkers and need not be enforced by Python itself at
runtime.

Motivation

The introduction of "~TypeForm allows new kinds of metaprogramming functions that operate
on typing special forms to be type-annotated and understood by typecheckers.

For example, here is a function that checks whether a value is assignable to a variable
of a particular type, and if so returns the original value:

def trycast[T](form: TypeForm[T], value: object) -> Optional[T]:

https://docs.google.com/document/d/1PRvl3uKE-BxvmyFO3Ic4fZDpgW2fOU58aYh3LJ3zLpk/edit
https://discuss.python.org/t/typeform-spelling-for-a-type-annotation-object-at-runtime/51435
https://discuss.python.org/t/typeform-spelling-for-a-type-annotation-object-at-runtime/51435
https://www.python.org/dev/peps/pep-0484/#the-type-of-class-objects
https://discuss.python.org/t/basic-terminology-for-types-and-type-forms/46741/39

The use of “TypeForm[] and the type variable T enable the return type of this function
to be influenced by a “~form value passed at runtime, which is quite powerful.

Here is another function that checks whether a value is assignable to a variable of a
particular type, and if so returns True (as a special "Typels[] bool [~TypelIsPep]):

def isassignable[T](value: object, form: TypeForm[T]) -> TypeIs[T]:

The use of “TypeForm[] and "“Typels[] together enables typecheckers to narrow the return
type appropriately depending on what form is passed in:

request_json: object = ...
if isassignable(request_json, Shape):
assert_type(request_json, Shape) # type is narrowed!

That “isassignable™ function enables a kind of enhanced “isinstance’ check which is
useful for [checking whether a value decoded from JSON conforms to a particular
structure] of nested "TypedDict's, "List's, "Optional’s, "Literal's, and other types.
This kind of check was alluded to in PEP 589[“typeddict-no-isinstance] but could not be
implemented at the time without a notation similar to "~TypeForm[] .

Why can't “Type be used?

One might think you could define the example functions above to take a “Type[T] - which
is syntax that already exists - rather than a “TypeForm[T] . However if you were to do
that then certain typing special forms like “Optional[str]” - which are not class objects
and therefore not "type’s at runtime - would be rejected:

uses a Type[T] parameter rather than a TypeForm[T]
def trycast_type[T](form: Type[T], value: object) -> Optional[T]:

trycast_type(str, 'hi') # ok; str is a Type

trycast_type(Optional[str], 'hi') # ERROR; Optional[str] is not a Type
trycast_type(Union[str, int], 'hi') # ERROR; Union[str, int] is not a Type
trycast_type(MyTypedDict, dict(value='hi')) # questionable; accepted by mypy 1.9.0

To solve that problem “Type could be widened to include the additional values allowed by
"TypeForm™ . However doing so would lose "Type 's current ability to spell a class object
which always supports instantiation and “isinstance™ checks, unlike arbitrary typing
special forms. Therefore "“TypeForm™ is proposed as new notation instead.

https://www.python.org/dev/peps/pep-0742/
https://mail.python.org/archives/list/typing-sig@python.org/thread/I5ZOQICTJCENTCDPHLZR7NT42QJ43GP4/
https://mail.python.org/archives/list/typing-sig@python.org/thread/I5ZOQICTJCENTCDPHLZR7NT42QJ43GP4/
https://www.python.org/dev/peps/pep-0589/#using-typeddict-types

For a longer explanation of why we don't just widen “Type[T] to accept all typing
special forms, see §"Widen Type[T] to support all typing special forms".

Common kinds of functions that would benefit from TypeForm

A survey of various Python libraries revealed a few kinds of commonly defined functions
which would benefit from "TypeForm[] :

* Assignability checkers:
* Returns whether a value is assignable to a type-form.
If so then also narrows the type of the value to match the type-form.
* Pattern 1: “def isassignable[T](value: object, form: TypeForm[T]) -> TypelIs[T]"
* Pattern 2: “def ismatch[T](value: object, form: TypeForm[T]) -> TypeGuard[T]"
* Examples: beartype.is bearable, trycast.isassignable, typeguard.check type,
xdsl.isa

* Converters:

* If a value is assignable to (or coercible to) a type-form then
returns the value narrowed to (or coerced to) that form.
Otherwise raises an exception.

* Pattern 1: “def convert[T](value: object, form: TypeForm[T]) -> T°

* Examples: cattrs.BaseConverter.structure, trycast.checkcast,
typedload.load

* Pattern 2:
class Converter[T](Generic[T]):

def _init_ (self, form: TypeForm[T]) -> None:
def convert(self, value: object) -> T:

* Examples: pydantic.TypeAdapter(T).validate python,
mashumaro.JSONDecoder(T) .decode

* Typed field definitions:
* Pattern:
class Field:
value type: TypeForm[T]

* Examples: attrs.make class, dataclasses.make dataclass, openapify

The survey also identified some introspection functions that take forms (both type-forms
and annotation-forms) as input using plain “object’s which would *not* gain functionality
by marking those inputs as "~ TypeForm[] :

* General introspection operations:

https://github.com/python/mypy/issues/9773#issuecomment-2017998886
https://github.com/beartype/beartype/issues/255
https://github.com/davidfstr/trycast?tab=readme-ov-file#isassignable-api
https://typeguard.readthedocs.io/en/latest/api.html#typeguard.check_type
https://github.com/xdslproject/xdsl/blob/ac12c9ab0d64618475efb98d1d197bdd79f593c3/xdsl/utils/hints.py#L23
https://github.com/python-attrs/cattrs/blob/5f5c11627a7f67a23d6212bc7df9f96243c62dc5/src/cattrs/converters.py#L332-L334
https://github.com/davidfstr/trycast#checkcast-api
https://ltworf.github.io/typedload/
https://stackoverflow.com/a/61021183/604063
https://github.com/Fatal1ty/mashumaro?tab=readme-ov-file#usage-example
https://www.attrs.org/en/stable/api.html#attrs.make_class
https://github.com/python/typeshed/issues/11653
https://github.com/Fatal1ty/openapify/blob/c8d968c7c9c8fd7d4888bd2ddbe18ffd1469f3ca/openapify/core/models.py#L16

* Pattern: “def get form_info(maybe form: object) -> ...
* Examples: typing.{get origin, get args},
tvping inspect.{is_*_type, get_origin, get_parameters}

There are also some introspection functions that take type-forms as input and return
complex values based on those forms. Such functions would require additional syntax to
fully support which is not proposed in this PEP:

* Typed lookup operations:
* Takes a sequence of type-forms and returns a tuple of instances of those forms.
* Pattern: “def get_instances(forms: *TypeForm[T]) -> Tuple[*T]"
* Examples: svcs.svcs_from(...).get(...)
*

Workaround: Use overloads like:
% ~o~

@overload

def get_instances(tl: TypeForm[T1]) -> Tuple[T1]:

@overload

def get instances(tl: TypeForm[T1l], t2: TypeForm[T2]) -> Tuple[T1, T2]:
(... repeat up to tuples of length 7 or so ...)

Specification

A type-form represents a “type’ object or a special typing form such as “Optional[str]’,
“Union[int, str] , or "MyTypedDict . A type-form type is written as "TypeForm[T] where
"T° is a type or a type variable. It can also be written without brackets as just
“TypeForm™, which is treated as shorthand for ~TypeForm[Any] .

Using TypeForms

TypeForm types may be used as function parameter types, return types, and variable types:

def is_union_type(form: TypeForm) -> bool: ... # parameter type

def union_of[S, T](s: TypeForm[S], t: TypeForm[T]) \
-> TypeForm[Union[S, T]]: ... # return type

STR_TYPE: TypeForm[str] = str # variable type

https://docs.python.org/3/library/typing.html#typing.get_origin
https://docs.python.org/3/library/typing.html#typing.get_args
https://github.com/ilevkivskyi/typing_inspect?tab=readme-ov-file#readme
https://github.com/hynek/svcs#readme

Note however that an *unannotated* variable assigned a TypeForm literal will not be
inferred to be of TypeForm type by typecheckers because PEP 484 [~type-alias-syntax
reserves that syntax for defining type aliases:

STR_TYPE = str # OOPS; treated as a type alias!

If you want a typechecker to recognize a TypeForm literal in a bare assignment you'll
need to explicitly declare the assignment-target as having " TypeForm™ type:

STR_TYPE: TypeForm[str] = str

STR_TYPE = str # type: TypeForm[str] # the type comment is significant

STR_TYPE: TypeForm[str]
STR_TYPE = str

TypeForm Values

A variable of type “TypeForm[T] where T is a type, may only be assigned a class object
or special form which is valid in *all* of the following locations:

* the right-hand-side of a variable declaration,

value: *form*

* the right-hand-side of a parameter declaration,
def some_func(value: *form*):

* the return type of a function:

def some_func() -> *form*:

https://www.python.org/dev/peps/pep-0484/#type-aliases

and which is a subtype of "T°.

A runtime object that is valid in only some but not all of the above locations, like
“Final[*form*]" (valid only in a variable declaration) or ~TypeIs[*form*]" (valid only in
a return type), is considered to be an "annotation form" but not a "type form".

Example of type-form values include:

* type objects like “int’, “str’, “object’, and " FooClass”

* generic collections like “List”, “List[int] , "Dict’, or "Dict[K, V]°

* callables 1like “Callable’, “Callable[[ArglType, Arg2Type], ReturnType] , “Callablel[...,
ReturnType]”

union forms like “int | str’, “Union[int, str]”, “Optional[str] , or ~Never’
literal forms like "Literal['r', 'rb', 'w', 'wb']"

type variables like T or “AnyStr’

annotated types like “Annotated[int, ValueRange(-10, 5)]°

type aliases like “Vector® (where “Vector = list[float])

the “Any” form

the "Type™ and "“Type[C] forms

the "TypeForm™ and ~TypeForm[T] forms

string literals that spell one of the above values, like ""Optional[str]""

* X X X X X ¥ ¥ X

Incomplete forms like a bare “Optional® or “Union® which do not spell a type are not
type-form values.

Forward References

LI T O T I L O A L O IO IO OO B |

Type-form values may contain string-based forward references. These forward references
are normalized at runtime to be " ForwardRef instances: [~forward-ref-normalization]

>>> IntTree = list[typing.Union[int, 'IntTree']]
>>> IntTree
list[typing.Union[int, ForwardRef('IntTree')]]

Therefore "~ForwardRef ™ instances, being equivalent to string-based forward references,
are also considered to be type-forms:

IntTreeRef: TypeForm = ForwardRef('IntTree') # OK

[~forward-ref-normalization]: Special forms at runtime normalize string arguments to
“ForwardRef™ instances using the “typing. type check()" and “typing. type_ convert()"
internal helper functions, as of Python 3.12. Runtime typecheckers may wish to implement
similar functions when working with string-based forward references.

Stringified TypeForms

L0 T T T O O A N O I I L T I I |

A type-form value may itself be a string-based forward reference:

IntTreeRef: TypeForm = 'IntTree' # OK

However the string itself must spell a valid type to be considered a type-form:

BadUnionl: TypeForm
BadUnion2: TypeForm

Union # ERROR: does not spell a type
"Union’' # ERROR: does not spell a type

Subtyping

Whether a TypeForm value can be assigned from one variable to another is determined by
the following rules for the is-subtype-of and is-consistent-with relationships:
A -consi n

TypeForm[] is covariant in its argument type, just like Type[]:

*

“TypeForm[T1] is a subtype of “TypeForm[T2] iff Tl is a subtype of "T2 .
"TypeForm[C1l] is a subtype of “Type[C2] iff "Cl° is a subtype of "C2'.
"Type[Cl] 1is a subtype of “TypeForm[C2] iff "Cl° is a subtype of "C2°.

*

*

>

plain Type can be assigned to a plain TypeForm but not the other way around:

*

“Type[Any] ™ 1is a subtype of “TypeForm[Any] . (But not the other way around.)
TypeForm[] is a kind of object, just like Type[]:

* “TypeForm[T] for any T 1is a subtype of “object .

Interactions with Type[] and type variables

https://www.python.org/dev/peps/pep-0483/#summary-of-gradual-typing

Both TypeForm[] and Type[] can be used to constrain the same type variable within the
same function definition:

def as_type[T](form: TypeForm[T]) -> Type[T] | None:
return form if isinstance(form, type) else None

def as_instance[T](form: TypeForm[T]) -> T | None:
return form() if isinstance(form, type) else None

Interactions with TypeIs[], TypeGuard[], and type variables
A type variable constrained by TypeForm[] can also be used by a TypeIs[] within the same
function definition:

def isassignable[T](value: object, form: TypeForm[T]) -> TypeIs[T]:

count: int | str = ...
if isassignable(count, int):
assert_type(count, int)
else:
assert_type(count, str)

or by a TypeGuard[] within the same function definition:

def isdefault[T](value: object, form: TypeForm[T]) -> TypeGuard[T]:
return (value == type()) if isinstance(form, type) else False

value: int | str = "'

if isdefault(value, int):
assert_type(value, int)
assert 0 == value

elif isdefault(value, str):
assert_type(value, str)
assert '' == value

else:
assert_type(value, int | str)

Interactions with Annotated[] and type variables

Annotated[] forms preserve their metadata at runtime:

>>> ValueRange: TypeAlias = slice

>>> PositiveInt: TypeAlias = Annotated[int, ValueRange(1, float('inf'))]
>>> PositivelInt

typing.Annotated[int, slice(1, inf, None)] # NOT: int

However Annotated[] forms need not preserve their metadata at typechecking-time:

count: PositiveInt =1
assert_type(count, int) # NOT: Annotated[int, ValueRange(1l, float('inf'))]

In particular when an Annotated[] argument is passed to a TypeForm[] parameter
constraining a type variable that is also used by a Typels[] or TypeGuard[], the metadata
need not be maintained as part of the type inferred by a typechecker:

Similar to isassignable(), but accepts Annotated[] forms describing constraints
def ismatch[T](value: object, form: TypeForm[T]) -> TypeGuard[T]:

count: int | str = -1
if ismatch(count, Positivelnt):

assert_type(count, int) # NOT: Annotated[int, ValueRange(1l, float('inf'))]
else:

assert_type(count, int | str)

Backwards Compatibility

No backward incompatible changes are made by this PEP.

Reference Implementation

The following will be true when [mypy#9773] is implemented:

The mypy type checker supports “TypeForm™ types. A reference implementation of the
runtime component is provided in the “typing_extensions™ module.

https://github.com/python/mypy/issues/9773

Rejected Ideas

"Type™ was [designed] to only be used to describe class objects. A class object can
always be instantiated by calling it and can always be used as the second argument of
“isinstance() .

"TypeForm™ on the other hand is typically introspected by the user in some way, is not
necessarily directly instantiable, and is not necessarily directly usable in a regular
“isinstance()” check.

It would be possible to widen “Type to include the additional values allowed by
"TypeForm™ but it would reduce clarity about the user's intentions when working with a
"Type . Different concepts and usage patterns; different spellings.

Accept arbitrary annotation-forms

Certain special forms can be used in *some* but not *all* annotation contexts:

For example Typels[] and TypeGuard[] can be used as a return type of a function but not
as a variable type or a parameter type:

def is positive int(value: object) -> TypeGuard[int]: ... # OK
def nonsense(value: TypeGuard[int]): ... # ERROR: TypeGuard[] not meaningful here

exotic_bool: TypeGuard[int] # ERROR: TypeGuard[] not meaningful here

For example Final[] can be used as a variable type but not as a parameter type or a
return type:

some_const: Final[str] = ... # OK
def foo(not_reassignable: Final[object]): ... # ERROR: Final[] not allowed here

def nonsense() -> Final[object]: ... # ERROR: Final[] not meaningful here

"TypeForm[T] ™ does not allow matching such annotation-forms which are not type-forms
because it is not clear how a type variable in position T should be constrained:

https://mail.python.org/archives/list/typing-sig@python.org/message/D5FHORQVPHX3BHUDGF3A3TBZURBXLPHD/

def ismatch[T](value: object, form: TypeForm[T]) -> TypeGuard[T]:

some_value = ...
if ismatch(some_value, TypeGuard[int]): # ERROR: TypeGuard[int] is not a TypeForm
reveal_type(some_value) # ? NOT TypeGuard[int], because invalid for a variable

def foo(some_arg):
if ismatch(some_arg, Final[int]): # ERROR: Final[int] is not a TypeForm
reveal type(some_arg) # ? NOT Final[int], because invalid for a parameter

Functions that wish to operate on *all* kinds of annotation-forms, including those that
are not type-forms, can continue to accept such forms as “object’ parameters, as they
must do so today:

* typing.py, from the standard library:
* “def get origin(maybe_annotation_form: object) -> object:
* Accepts type-forms like “list[int] , annotation-forms like “Final[int]",
incomplete forms like “Union’, and non-forms like "1°.
* Returns type-forms like “list’, annotation-forms like “Final’,
incomplete forms like “Union’, and “None'.
* “def get_args(maybe_annotation_form: object) -> tuple[object, ...]:
* Accepts type-forms like “list[int] , annotation-forms like "Final[int]",
incomplete forms like “Union’, and non-forms like "1°.
* Returns a tuple containing type-forms like "1list™ and

non-forms like " 'annotated metadata'® (from inside “Annotated[] forms).

Copyright

This document is placed in the public domain or under the
CCO-1.0-Universal license, whichever is more permissive.

Local Variables:

mode: indented-text
indent-tabs-mode: nil
sentence-end-double-space: t
fill-column: 70

coding: utf-8

End:

