For each of the questions on this worksheet, refer to the phase diagram for mysterious compound X.

- 1) What is the critical temperature of compound X?
- 2) If you were to have a bottle containing compound X in your closet, what phase would it most likely be in?
- 3) At what temperature and pressure will all three phases coexist in equilibrium?
- 4) If I have a bottle of compound X at a pressure of 45 atm and temperature of 100^{0} C, what will happen if I raise the temperature to 400^{0} C?
- 5) Why can't compound X be boiled at a temperature of 200° C?
- 6) If I wanted to, could I drink compound X?

	NMP	NBP	Triple	Point	Critical	Point
N ₂	-210.0 °C	-196 ⁰ C	-210.1 ⁰ C	0.127 atm	-147 ⁰ C	33 atm
CO ₂		(NSP) -78.5 ⁰ C	-56 ⁰ C	5 atm	31 °C	73 atm
NH ₃	-77.8 °C	-33 ⁰ C	-77.9 °C	0.006 atm	132 °C	112 atm
H ₂ O	0 °C	100 °C	0.01 °C	0.006 atm	347 °C	218 atm
I_2	113 °C	185 °C	113 °C	0.13 atm	512 °C	116 atm

- 1) $I_2(s)$ is placed in an evacuated 50 mL cylinder at room temperature. At equilibrium 50 grams of solid is present. If 5 grams of the solid is removed and the system is allowed to reestablish equilibrium:
- A. The pressure in the cylinder will be higher.
- B. The pressure in the cylinder will be lower.
- C. The pressure in the cylinder will remain the same.
- 2) If the volume of the cylinder is increased to 60 mL and the system is allowed to reestablish equilibrium:
- A. The pressure in the cylinder will be higher.
- B. The pressure in the cylinder will be lower.
- C. The pressure in the cylinder will remain the same.
- 3) Sketch a phase diagram for N₂

Sketch a phase diagram for CO ₂
5) Can you make liquid CO ₂ at room temperature? Explain.
6) Does CO ₂ have a normal boiling point? Explain.
7)Sketch an approximate phase diagram for iodine. Label CLEARLY all of the important lines, curves, regions and points.
8)Can I ₂ be liquefied at room temperature? 1. YES 2. NO (circle one)
This is because: (Choose the best answer)
 A. Room temperature is above the critical point of I₂. B. Room temperature is above the triple point of I₂. C. Room temperature is between the critical point and the triple point of I₂. D. Room temperature is below the critical point of I₂. E. Room temperature is below the triple point of I₂.

PART A - INTERMOLECULAR FORCES

1. Fill in the diagram (with high or low) to show how intermolecular forces influence the **volatility**, **vapor pressure**, and **boiling point** of a substance.

PART B – VAPOR PRESSURE GRAPHS Use the graph below to answer the following questions.

- 2. What is the vapor pressure of CHCl₃ at 50°C?_____
- 3. What is the boiling point of H₂O when the external pressure is 30 kPa?
- 4. What is the normal boiling point of CCI₄?
- 5. Which substance has the weakest IMF?

PART C – HEATING CURVES. Use the heating curve below to answer the following questions.

- 6. What is the melting point of the substance?
- 7. What is the boiling point of the substance?
- 8. Which letter represents heating of the solid?
- 9. Which letter represents heating of the vapor?
- 10. Which letter represents melting of the solid?
- 11. Which letter represents boiling of the liquid?

PART D - Phase Diagrams. Use the phase diagram for water below to answer the following questions.

- 12. What is the state of water at 2 atm and 50°
- 13. What phase change will occur if the temperature is lowered from 80°C to -5°C at 1 atm?
- 14. You have ice at -10°C and 1 atm. What could you do in order cause the ice to sublime?

