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Introduction
The coming decade will bring HEP to the exabyte scale. The expected data volumes of the
HL-LHC experiments, the DUNE experiment, and even non-HEP experiments such as SKA
(Square Kilometre Array) will all enter this regime. In devising experimental computing models
for this era, many factors have to be taken into account.  In particular, the increasing availability
of very high-speed networks, which may reduce the need for CPU and data co-location, need to
be examined. Such networks may allow for more extensive use of data access over the
wide-area network (WAN), which may provide failover capabilities, global and federated data
namespaces, and will have an impact on data caching. Shifts in the data presentation/analysis
models such as a potential move to event-based data streaming from the more traditional
dataset-based or file-based data access, will be particularly important for optimizing the
utilization of opportunistic computing cycles on HPC facilities, commercial cloud resources, and
campus clusters, and can potentially resolve currently limiting factors such as job eviction.

Planned analysis of HL-LHC data and data analysis from other large international
collaborations will need to adopt a distributed computing model due to its scope. The data
management systems that will enable this type of analysis will need to provide cost-based
optimization of the data locations and delivery mechanisms.

Challenges and Opportunities
The LHC experiments currently provision and manage about an Exabyte of storage,
approximately half of which is archival, and half is traditional disk storage. The storage
requirements per year are expected to jump by a factor of 10 for the HL-LHC. This itself
is faster than projected Moore's Law gains and will present major challenges. Storage
will remain one of the visible cost drivers for HEP computing, however the projected
growth and cost of the computational resources needed to analyze the data is also
expected to grow even faster than the base storage costs. The combination of storage
and analysis computing costs may restrict scientific output and potential physics reach
of the experiments. Thus, new techniques and algorithms are likely to be required.
The three main challenges for data in the HL-LHC era can thus be summarized:
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1. Big Data: The HL-LHC era will significantly increase both the date rate and the
data volume. The computing systems will need to handle this without significant
cost increases and within evolving storage technology limitations.

2. Dynamic Distributed Computing: In addition, the significantly increased
computational requirements for the HL-LHC era will also place new
requirements on data. Specifically, the use of new types of compute resources
(e.g., cloud, HPC) with different dynamic availability and characteristics are used
will require more dynamic DOMA systems.

3. New Applications: New applications, such as machine learning training or
high-rate data-query systems for analysis, will likely be employed to meet the
computational constraints and to extend the physics reach of the HL-LHC. These
new applications will place new requirements on how and where data is
accessed and produced. For example, specific applications (e.g. training for
machine learning) may require use of specialized processor resources such as
GPUs, placing further requirements on data.

The rapid increase in recent years of data-intensive problems in both the commercial
world and in the rest of the research world also provides a number of opportunities.

Current Approaches
The original LHC computing models (circa 2005) were built up from the simpler models
used before distributed computing was a central part of HEP computing. This allowed
for a reasonably clean separation between three different aspects of interacting with
data: organization, management and access.

● Data Organization: This is essentially how data is structured as it is wri�en.
Most data is wri�en in flat files, in ROOT format, typically with a column-wise
organization of the data. The records corresponding to these columns are
compressed. The internal details of this organization are typically visible only to
individual software applications.

● Data Management: The key challenge here was the transition to the use of
distributed computing in the form of the grid. The experiments developed
dedicated data transfer and placement systems, along with catalogs, to move
data between computing centers. To first order, the computing models were
rather static: data was placed at sites and the relevant compute jobs were sent to
the right locations. Applications might interact with catalogs or, at times, the
workflow management systems does this on behalf of the applications.

● Data Access: Various protocols are used for direct reads (rfio, dcap, xrootd, etc.)
with a given computer center and/or explicit local stage-in and caching for read
by jobs. Application access may use different protocols than those used by the
data transfers between sites.
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Before the LHC turn-on and in the first years of the LHC, these three areas were, to first
order, optimized independently. Many of the challenges were in the area of ''Data
Management (DM)'' as the Worldwide LHC Computing Grid was commissioned. As
the LHC computing matured through Run1 and Run2, the interest has turned to
optimizations spanning these three areas. For example, the recent use of ``Data
Federations'' mixes up Data Management and Access. As we will see below, some of the
foreseen opportunities towards HL-LHC may require global optimizations.

Thus in this document we take a broader view than traditional “DM'', and consider the
combination of ``Data Organization, Management and Access (DOMA)'') together. We
believe that this full picture of data needs in HEP will provide important opportunities
for efficiency and scalability as we enter the many-Exabyte era.

HEP Workflow inContext
The way data are used at HEP experiments results in a dynamic range that spans many orders
of magnitude between the IOPS transactions for data access and the bandwidth to storage that
is required to store or retrieve the information. The primary data analysis workflows that drive
these bandwidth requirements can be categorized into four main activities. These are the
contextual environment in which we present future evolutions for HEP data access. In particular,
characteristics that describe these activities are enumerated for each category:

1) Reconstruction: Event reconstruction is CPU limited, due to the complexity of detector
data and the computational algorithms needed to associate and disentangle the data.
This is true of reconstruction methods used today at the LHC and throughout the HEP
community. This will continue to be the driving characteristic of reconstruction at the
HL-LHC and for liquid argon TPC experiments. The CPU-bound nature of the algorithms
and the ratio of event size to network bandwidth make the option of streaming individual
events records (e.g. full collision events or beam spill triggers) across wide area
networks to compute elements a feasible analysis strategy. The requirements of event
streaming analysis models can be satisfied by a wide range of storage solutions.

2) Simulation: HEP event simulation strategies focus on transforming a small set of key
input parameters into event and detector response information that is representative of
what would be seen in the physical detector systems. Simulation processes are typically
characterized by highly asymmetric Input/Output workflows which have very small data
ingest (typically just the key input parameters) and produce output events which are
similar in size and structure to real detector data. The output of these simulation
processes overlap heavily with other data storage and data replication processes. The
requirements and challenges that this output presents are treated in those contexts. The
primary drivers that differentiate this type of HEP workflow from the other categorizations
are the increased complexities that the simulation stages often require. These
simulations often rely on auxiliary event generation mechanisms and can, in some HEP
domains, require large external data sets representing interaction cross sections or
detector response functions to be available to each instance of the event simulation.
This type of common input and overlay data may present a challenge in relation to its
scaling to the runtime environments of future HPC facilities and to the design of caching
layers at computing site.

3) Analysis: Analysis level datasets and subsets are typically comprised of refined or
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reduced information that is most pertinent to the extraction of physics quantities. These
analysis-focused event records can often be accepted or rejected through fast
pre-filtered methods which do not require the reading and retrieval of the full event
record. This fundamental difference in the way that the analysis data is consumed
makes it more susceptible to storage bandwidth limitations and to IOPs transaction limits
that underlying technologies can provide. In particular the internal structure of the event
data can dramatically impact the efficiency of data retrieval and favor different access
models and protocols (i.e. event streaming.) and the actual analysis calculations being
performed can dramatically affect the CPU to IO ratios. These factors make this
categorization of data the most challenging to project to future storage needs and
models.

4) Replication: Data replication, whether within a site or across multiple sites, is performed
to enable efficient data access by improving data locality (the proximity of the data to
compute resources) and exploiting the available data bandwidth between the storage
and the compute locations. Data replication also serves to guard against data loss.
Data replication places modest requirements on the rate of IOP transactions that need to
be supported, but drives the bandwidth requirements that are needed in enacting
site-to-site data transfers between WAN endpoints (e.g. 10-100Gbps.) This requirement
on the available WAN bandwidth provides a corresponding performance requirement on
on the underlying storage systems to match the network performance. Satisfying both
requirements is necessary to provide an efficient point to point data flow.

In addition to the characteristics described above, HEP workflows in each category exhibit a
high degree of parallelism, which allow the work to map readily into both high throughput
computing (HTC) and high performance computing (HPC) environments. These domains span
wide dynamic ranges in their requirements for concurrent data access. If the experiments of the
HL-LHC, DUNE and other large international projects are to utilize these facilities, they will need
the ability to integrate with multiple storage technologies. The storage technologies will need to
be tuned or matched to the corresponding computing resources that the experiments are
targeting their workflows to execute on.

These storage models will also need to be designed and optimized for cost, in the
context of the scientific workflows that they are enabling. Simultaneously, these storage models
must remain flexible enough to support evolving physical storage options similar to the the shifts
that have occurred in recent years between mRAM, SSDs, shingled disks, tapes and other
technologies.  

Data Organization Models
The HEP community has long established patterns that have been used for data organization
and have shaped the prevailing data access and storage models that are in use today. These
established patterns have focused around sets of event records organized into discrete
collections through traditional file based storage. There are, however, potential gains that can be
made by exploring alternative data organization models and the corresponding access and
storage models that they can enable. These alternative designs should be evaluated for the
HL-LHC era and, if found to be advantageous, implemented by the community. A shift in
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designs may have the potential to reduce storage costs, shift network utilisation, and result in
more efficient use of compute resources.

There are two main avenues that these organizational changes can follow, each with different
impacts on the analysis methodologies. First, we should reconsider the structure of the data,
which can be row oriented, column oriented, have varying levels of granularity, represent larger
or smaller aggregations of objects etc, boosting the efficiency of particular applications.

Secondly, we should reconsider the granularity at which data management systems operate.
This is currently aggregations of events (files, or larger sets such as blocks or datasets), and
could shift towards being the event (or even sub-event), potentially reducing storage volumes. In
that case, other types of “container” beyond files could be considered (e.g. objects).

Design decisions will be subject to competing requirements from data management and access
optimisation, and will have consequences throughout the system. We have to tackle a global
optimization problem, taking into account all use cases and their respective frequencies to
further optimise application performance for a given resource investment.

Optimizing Data Access
Data structures

The structure of data has to be adapted to applications’ requirements. At one limit, the data
could be organized simply as events, the other extreme is to organize the data as columns
which represent sub-event level objects such as particles. Event-based organization favors
applications like event displays while column-based organization favors large statistical
analysis. Our current system of data tiers in files draws intermediate (and overlapping)
rectangles between these two extremes. Finding the right balance will be an important factor in
efficient data analysis.

While it appears that organizing data in a more fine-grained fashion, as events or columns, has
the potential of opening additional avenues for cost-savings and flexibility, the implications of
such an organizational shift are still not well understood and need to be investigated.

Object and Cloud Storage systems

Decisions on granularity and structure have the potential of broadening the scope of
technologies that can be used to store the data; for example, exploiting object stores (such as
AWS S3) as event stores. In addition, this would support parallel reading and writing of events
as event objects from applications. This could allow applications to better scale to large
numbers of CPU core where now these applications concurrency is limited by the requirement
to sequentially write events to files. Currently, the efficiency of of reading and writing events from
object stores is sensitive to the size of the event. The smaller the event the worse is the
efficiency.. Some of this may be mitigated by creating event bundles (i.e. several events in one
object). The evolution of the ATLAS Event Service may provide some of the answers and
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should be supported. As a parallel effort, the ROOT team is also looking into increasing
concurrency within the ROOT framework. This effort should also be supported as it may have
more immediate success in the near term.

Commercial providers offer innovative storage services (“cloud storage”) which may fit certain
use cases well. The relevance of these solutions to computing models must be understood, not
only through technical metrics such as performance, but with an understanding of the underlying
cost structure and the risks associated with such procurements. Reliance on commercially
procured cloud storage as a core component of data organizational models would require a
potential fundamental shift in user policies and discussion with funding agencies.

Optimizing Data Management

Data Management policy will directly affect data access. For example, the decision to distribute
multiple enriched data samples optimized for different use cases would improve data access
and thus compute efficiency, at the expense of larger volumes transferred and stored. Similarly,
the unit of data management could be changed, and become the event, which promises to
reduce storage volumes and promote the use of opportunistic resources through enabling
pre-emptibility in jobs. This would have knock-on effects on data catalogues, data distribution
and storage systems, and would affect data access. Where an experiment positions itself
amongst all these possibilities will be dictated by its policy. Thus the potential gains in terms of
efficient use of resources should be realised through data management systems which allow
this policy to be expressed and implemented.

Data catalog models
A key requirement in devising data catalog models is understanding the required granularity of
data to be cataloged and what data for an experiment needs to be centrally cataloged or
tracked, and for what purpose (accounting, metadata, location). Analysis access to the data, for
instance, may benefit from being below the event level (e.g. physics object). Any such catalogs
may have to be external to the primary data store (e.g., relational databases that work with
metadata in the primary data store). If cataloging requirements for production and reconstruction
differ considerably from analysis, an approach with multiple, complementary catalogs can also
be considered. The cataloging schemes chosen will be tightly coupled with the data
organization models. For example, in the case where data organization is object-based or
content-addressable storage is used, the catalogs need only a single handle to have a fully
descriptive location of a given event or other object being sought.

Our concern is that the size and complexity of a data catalog is proportional to the granularity of
the data organization. Given that the organization is still in a state of flux (see previous section)
it is difficult to judge the impact of future dataset sizes on data catalog models other than the
simple fact that catalog sizes are likely to grow. It does seem clear, however, that data catalog
models need to evolve in lockstep with the evolution of data organization models. A large and
diverse set of foundational technologies exist upon which such future catalogs could be built. An
informed technology choice which supports the anticipated catalog use cases will be crucial in
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enabling future scalability.
 

Data delivery methods
Data delivery models can become a limiting factor in performance, especially as they heavily
depend on shared resources such storage systems and the network. Caching has to be
considered to avoid data delivery bottlenecks and unnecessary transfers. At present, HEP data
delivery models are designed solely with the traditional sequential processing paradigm used in
reconstruction in mind. Computing models where the only form of persistent storage is on tape
and all, or nearly all, disk-based storage is considered as a caching layer should also be
considered, in which case work on optimising workflows for cache efficiency and exploiting data
popularity metrics would be valuable.
 
A useful analogy for data delivery methods might be content delivery network services (CDNs)
such as the one offered by Akamai. Without CDNs, on-demand streaming of movies over the
Internet or even the delivery of the web sites of major news outlets like CNN or BBC would
quickly collapse. What is the equivalent of content delivery for accessing huge datasets over
distance, and for which a particular analysis might only require a fraction of the dataset? CDNs
use, to great benefit, highly sophisticated, proprietary naming, caching, and placement
techniques that are customized to particular types of data and what is known about their access
patterns. Similarly intelligent techniques could be used to place, compose, and deliver scientific
data products that minimizes data movement, latency, and other costs, taking advantage of data
semantics and information about the location of reusable intermediate results. This is not unlike
query planning in relational databases, except for the scale and the different data type of
scientific data: a query optimizer might be able to recognize that data can be filtered remotely, or
combined from data products cached in the neighborhood instead of having to fetch everything
across continents. New approaches, like Named Data Networking (NDN), could play a role: by
allowing to name, at the network level, the data you are looking for rather than its location, it
opens the paths for many optimizations behind the scenes based on factors such as the client
application location or the data type.

Currently, new data-caching strategies are being deployed (e.g., XRootD caching proxy servers,
server-less caching, ARC-style caching) and may provide sufficient information on how such
strategies can optimize mammoth data delivery task for HL-LHC event reconstruction and
analysis. However, without a global view on how these strategies are used, they will likely have
a limited impact on improving data delivery efficiency.

New Analysis Paradigms
Data analysis is currently tied in with ROOT-based formats. In many currently-used paradigms,
physicists consider all events at an equivalent level of detail and in the format offering the
highest level of detail that needs to be considered in an analysis.  However, not every event
considered in analysis requires the same level of detail. One consideration to improve event
access throughput is to design event tiers with different abstractions, and thus data sizes. All
events can be considered at a lighter-weight tier while events of interest only can be accessed
with a more information-rich tier.
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For more scalable analysis, another opportunity to evaluate is how much work can be offloaded
to a storage system, for example caching uncompressed or reordered data for fast access. The
idea can be extended to virtual data and to query interfaces which would perform some of the
transformation logic currently executed on CPU workers. Interactive querying of large datasets
is an active field in the Big Data industry; examples include Spark-SQL, Impala, Kudu, Hawq,
Apache Drill, and Google Dremel/BigQuery. A key question is about the usability of these
techniques in HEP and we need to assess if our data transformations are not too complex for
the SQL-based query languages used by these products. We also need to take into account that
the adoption of these techniques, if they prove to be beneficial, would represent a disruptive
change which directly impacts the end user and therefore promoting acceptance through
intermediate solutions would be desirable.

Many analyses may benefit from column-based data access instead of the more traditional
row-based access. Enabling data queries that consider histogram indexing is another feature
that could provide performance increases in analysis.

When evaluating the potential benefits of moving to new techniques, for analysis in particular
but not only, we should not forget that some techniques, like machine learning-based
techniques, may have contradictory requirements. On one end, machine learning should
dramatically reduce the pressure on the storage at the cost of using more CPU but it requires a
learning phase which, even if it is shorter compared to the exploitation phase, can require a
significant amount of resources with a non-typical, iterative, data access pattern. Thus, the
challenge remains to find a good compromise to efficiently support a large variety of access
patterns.

In addition to assessing the techniques that could improve the performance for the various use
cases that we have, it is also important to ensure that the resources required by these
techniques are in line with expected budget scenarios. Many of these techniques may imply
shifting some of the storage resource usage to CPU usage or vice-versa. We need to ensure
that the global cost will remain similar to what it is today and that the resulting computing model
evolution is compatible with other constraints.

Performance : Tools and Metrics
As the size of available datasets grows, we must allow for the possibility of increased
user-driven selection and dataset generation. In terms of reducing the strain on data access,
techniques such as data augmentation can prove useful. Cluster-computing frameworks (e.g.,
Spark) can also be leveraged to reduce the time of dataset reduction and access. It will be
necessary to study and classify IO patterns in applications used in order to understand how data
access methods can be optimized across prevalent access patterns. Pattern data can then be
used in algorithms resulting from active research in computer science that study payoffs
between storage and cpu in various computing models.

A first correlated analysis of the IO patterns of different computational tasks has already started
at the CERN computing center and within several experiments. In particular the combination of
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infrastructure and experiment information (e.g. detailed knowledge of hardware capabilities and
network topology, per job CPU and storage metrics) may allow us to define more meaningful
performance metrics than the traditionally used raw data rate and CPU utilization which both
show their limitations. These metrics should enable a joint quantitative comparison of different
storage and computing approaches across individual system boundaries and hence lead to a
more effective resource investment.
 

Common Challenges
The projected event complexity of data from future LHC runs and from high resolution liquid
argon detectors will require advanced reconstruction algorithms and analysis tools to
understand. The precursors of these tools, in the form of new machine learning paradigms and
pattern recognition algorithms, already are proving to be drivers for the CPU needs of the HEP
community. As these techniques continue to grow and blossom, they will place new
requirements on the computational resources that need to be leveraged by all of HEP. The
storage systems that are developed, and the data management techniques that are employed
will need to directly support this wide range of computational facilities, and will need to be
matched to the changes in the computational work, so as not to impede the improvements that
they are bringing.

Storage will remain one of the visible cost drivers for HEP computing, but the projected
growth and cost of the computational resources needed to analyze the data are expected to
grow faster than the base storage costs. The combination of storage and analysis computing
costs may restrict scientific output and potential physics reach of the experiments. There must
be R&D efforts in data management on how to minimize the impact of the data access and
storage model on the overall cost of doing scientific analysis. This R&D should include an
optimization of both the capital costs of storage, as well as the potential impacts the storage
systems can have on the CPU requirements for the experiments and their costs.

The ability to leverage new storage technologies as they become available into existing data
delivery models is a challenge that we must be prepared for. New storage systems will present
new interfaces and new behaviour. A key decision in their successful exploitation will be
whether to encapsulate this within a more familiar service or whether to present the new
interface directly to applications which will thus have to be adapted. As discussed in the
preceding sections, much of this change can be aided by active R&D into our own IO patterns;
an approach which has not yet been adopted widely by the field.

HEP experiments should be prepared to leverage “tactical storage”.
Storage that becomes most cost-effective as it becomes available (e.g., from a cloud provider)
and have a data management and provisioning system that can exploit such resources on short
notice. Volatile data sources would impact many aspects of the system; catalogs, job brokering,
monitoring/alerting, accounting, the applications themselves.
On the hardware side, R&D is needed in alternative approaches to data archiving to determine
the possible cost/performance tradeoffs. Currently, tape is extensively used to hold data that
cannot be economically made available online. While the data is still accessible, it comes with a
high latency penalty; limiting possible analysis. We suggest investigating either separate direct
access-based archives (e.g. disk or optical) or new models that overlay online direct access

9 of 12



volumes with archive space. This is especially relevant when access latency is proportional to
storage density. Either approach would need to also evaluate reliability risks and the effort
needed to provide data stability.

Cost reductions in maintenance and operation of the storage infrastructure can be realised
through convergence of the major experiments and resource providers on shared solutions.
This does not necessarily mean promoting a monoculture, as different solutions will be adapted
to certain major classes of use-case, type of site or funding environment. Indeed, there will
always be a judgment to make on the desirability of using a variety of specialised systems, or
abstracting the commonalities through a more limited but common interface (the SRM story
illustrates this point). Reduced costs and improved sustainability will be further promoted by
extending these concepts of convergence beyond HEP and into the other large-scale scientific
endeavours that will share the infrastructure in the coming decade. Efforts must be made as
early as possible, during the formative design phases of such projects, to create the necessary
links.

Finally, any and all changes undertaken must not make the ease of access to data any worse
than it is under current computing models. We must also be prepared to accept the fact that the
best possible solution may require significant changes in the way data is handled and analyzed.
What is clear is that what is being done today will not scale to the needs of HL LHC.

Research and Development Roadmap and
Goals

Event-based granularity - Can this be implemented efficiently, scalably and in a cost-effective
manner for relevant use cases (reco, simulation, event-picking)? Does it provide an advantage
over current file-based granularity?

- Quantify impact on performances and resource utilization (storage, network) for the main
type of access patterns (simulation, reconstruction, analysis)

- Assess impact on catalogs and data distribution
- Assess whether event-granularity makes sense in object stores that tend to require large

chunks of data for efficiency
- Does it improve recoverability from preemption, in particular when using cloud spot

resources and/or dynamic HPC resources

Should be completed by 2020: actions can be done in parallel.
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Data organization and analysis technologies - How can we benefit from technologies adopted
by the big-data world?

- row-based vs. column-based organization: impact of storage organization on the
performance of each kind of access, potential storage format providing good
performance for both

- Can map-reduce, Spark-like analysis and their functional or declarative interfaces be
adapted to HEP analysis needs?

- Evaluate just in time decompression schemes and mappings onto hardware
architectures considering the flow of data from spinning disk to memory and application

Proof-of-concept by 2020, implementation if PoC successful in the following years

Data caching - What role will caching play to use compute resources and what technologies will
be used?

- Quantify benefit of caching for main use cases (reconstruction, analysis, simulation)
- Assess benefit of caching for Machine Learning-based applications, in particular for the

learning phase
- What are the benefits of a CDN or NDN approach beyond what HEP is doing today with

their data delivery systems?

First two actions to be completed by 2020, CDN/NDN evaluation more long-term

Getting the most out of the storage diversity - how to minimize HEP infrastructure cost by
exploiting varied quality of service from different storage technologies?

- Which role for opportunistic/tactical storage
- Role of archival storage solutions

Proof-of-concept by 2020, implementation if PoC successful in the following years

Efficiency / latency (global optimization) - Can we globally optimize data access latency vs
efficiency of CPU use at a sustainable cost?

- Impact of concentrating the data in fewer, larger locations (“data-lake” approach)
- Impact of an increased use of opportunistic compute resources, further from the data

Proof-of-concept by 2020, implementation if PoC successful in the following years

Conclusions
This document presents several areas pertaining to data access and management in HEP that
will need to be addressed in the coming decade before the expected volume and complexity of
data becomes prohibitively expensive to store, access, and analyze. Extending current data
handling methods and methodologies will prove intractable in the HL-LHC and DUNE eras. The
development and adoption of new data analysis paradigms gives the field, as a whole, a window
in which to adapt our data access and data management schemes to ones which are more
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suited and optimally matched to a wide range of advanced computing models and analysis
applications. This type of shift has the potential for enabling new analysis methods and allowing
for an increase in scientific output.
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