

OCR A-Level Computer Science Spec Notes

2.3 Algorithms

2.3.1 Algorithms
(a) Analysis and design of algorithms for a given situation​ ​ ​
Algorithms: Set of instructions that complete a task when execute

-​ Algorithms run by computers are called 'programs'
-​ Scale algorithms by:

●​ The time it takes for the algorithm to complete
●​ The memory/resources the algorithm needs. 'space'.
●​ Complexity (Big O notation)

(b) The suitability of different algorithms for a given task and data set, in terms of execution time
and space​
There are different suitable algorithms for each task

●​ Space efficiency:
-​ The measure of how much memory (space) the algorithm takes as its input (N) is scaled

up
-​ Space increases linearly with N
-​ Code space is constant/data space is also constant

●​ Time efficiency
-​ Measure of how much time it takes to complete an algorithm as its input (N)

increases
-​ Time increases linearly with N
-​ Sum of numbers = n(n+1)/2

●​ Big O notation
-​ Refer to ((c) Measures and methods to determine the efficiency of algorithms (Big

O) notation (constant, linear, polynomial, exponential and logarithmic complexity))
​
(c) Measures and methods to determine the efficiency of algorithms (Big O) notation (constant,
linear, polynomial, exponential and logarithmic complexity)
(Big O) notation

-​ Shows highest order component with any constants removed to evaluate the complexity
and worst-case scenario of an algorithm.

-​ Shows how time increases as data size increases to show limiting behaviour.

Big O Notation

●​ O(1) – Constant complexity e.g. printing first letter of string.
●​ O(n) – Linear complexity e.g. finding largest number in list.
●​ O(kn) – Polynomial complexity e.g. bubble sort.
●​ O(k^n) – Exponential complexity e.g. travelling salesman problem.
●​ O(logn) – Logarithmic complexity e.g. binary search

(d) Comparison of the complexity of algorithms​
Complexity

-​ Complexity is a measure of how much time, memory space or resources needed for an
algorithm increases as the data size it works on increases.

-​ Represents the average complexity in Big-O notation.
-​ Big-O notation just shows the highest order component with any constants removed.
-​ Shows the limiting behaviour of an algorithm to classify its complexity.
-​ Evaluates the worst case scenario for the algorithm.

Types of Complexity

Complexity Description Graph

Constant
complexity

O(1)

-​ Time taken for an algorithm stays the same
regardless of the size of the data set

-​ Example: Printing the first letter of a string. No
matter how big the string gets it won’t take longer to
display the first letter.

Linear
complexity

O(n)

-​ This is where the time taken for an algorithm
increases proportionally or at the same rate with
the size of the data set.

-​ Example: Finding the largest number in a list. If the
list size doubles, the time taken doubles.

Polynomial
complexity

O(kn) (where
k>=0)

-​ This is where the time taken for an algorithm
increases proportionally to n to the power of a
constant.

-​ Bubble sort is an example of such an algorithm.

Exponential
complexity

O(k^n)
(where k>1)

-​ This is where the time taken for an algorithm
increases exponentially as the data set increases.

-​ Travelling Salesman Problem = example algorithm.
-​ The inverse of logarithmic growth.
-​ Does not scale up well when increased in number of

data items.

Logarithmic
complexity

O(log n)

-​ This is where the time taken for an algorithm
increases logarithmically as the data set increases.

-​ As n increases, the time taken increases at a slower
rate, e.g. Binary search.

-​ The inverse of exponential growth.
-​ Scales up well as does not increase significantly

with the number of data items.

​

(e) Algorithms for the main data structures (stacks, queues, trees, linked lists, depth-first
(post-order) and breadth-first traversal of trees)

Data Structures Description Algorithm

Stack PUSH -​ When a data item is
added to the top of a
stack

Stack POP -​ When a data item is
removed from the
top of a stack

Queue PUSH -​ When a data item is
added to the back of
a queue

Queue POP -​ When a data item is
removed from the
front of a queue

Linked List
(Output in

Order)

-​ When the contents
of a linked list are
displayed in order

Linked List (Add
item to list)

-​ When a data item is
added anywhere on a
linked list

Tree

Traversal
Description Algorithm

Depth first
(post-order)

-​ Visit all nodes to the left
of the root node

-​ Visit right
-​ Visit root node
-​ Repeat three points for

each node visited
-​ Depth first isn’t

guaranteed to find the
quickest solution and
possibly may never find
the solution if no
precautions to revisit
previously visited states.

Breadth
first

-​ Visit root node
-​ Visit all direct subnodes

(children)
-​ Visit all subnodes of first

subnode
-​ Repeat three points for

each subnode visited
-​ Breadth first requires

more memory than Depth
first search.

-​ It is slower if you are
looking at deep parts of
the tree.

(f) Standard algorithms (bubble sort, insertion sort, merge sort, quick sort, Dijkstra's shortest
path algorithm,A* algorithm, binary search and linear search)

Sort Description Algorithm

Bubble Sort -​ Is intuitive (easy to
understand and program)
but inefficient.

-​ Uses a temp element.
-​ Moves through the data

in the list repeatedly in a
linear way

-​ Start at the beginning
and compare the first
item with the second.

-​ If they are out of order,
swap them and set a
variable swapMade true.

-​ Do the same with the
second and third item,
third and fourth, and so
on until the end of the
list.

-​ When, at the end of the
list, if swapMade is true,
change it to false and
start again; otherwise, If
it is false, the list is
sorted and the algorithm
stops.

Insertion
Sort

-​ Works by dividing a list
into two parts: sorted
and unsorted

-​ Elements are inserted
one by one into their
correct position in the
sorted section by
shuffling them left until
they are larger than the
item to the left of them
until all items in the list
are checked.

-​ Simplest sort algorithm
-​ Inefficient & takes longer

for large sets of data

Merge Sort -​ Works by splitting n data
items into n sublists one
item big.

-​ These lists are then
merged into sorted lists
two items big, which are
merged into lists four
items big, and so on until
there is one sorted list.

-​ Is a recursive algorithm =
require more memory
space

-​ Is fast & more efficient
with larger volumes of
data to sort.

Quick Sort -​ Uses divide and conquer
-​ Picks an item as a ‘pivot’.
-​ It then creates two

sub-lists: those bigger
than the pivot and those
smaller.

-​ The same process is then
applied
recursively/iteratively
to the sub-lists until all
items are pivots, which
will be in the correct
order.

-​ Alternative method uses
two pointers.

-​ Compares the numbers at
the pointers and swaps
them if they are in the
wrong order.

-​ Moves one pointer at a
time.

-​ Very quick for large sets
of data.

-​ Initial arrangement of
data affects the time
taken.

-​ Harder to code.

Path Algorithms Description Algorithm

Dijkstra’s
shortest path

algorithm

-​ Finds the shortest
path between two
nodes on a graph.

-​ It works by keeping
track of the shortest
distance to each
node from the
starting node.

-​ It continues this until
it has found the
destination node.

A* algorithm -​ Improvement on
Dijkstra’s algorithm.

-​ Heuristic approach
to estimate the
distance to the final
node, = shortest path
in less time

-​ Uses the distance
from the start node
plus the heuristic
estimate to the end
node.

-​ Chooses which node
to take next using the
shortest distance +
heuristic.

-​ All adjoining nodes
from this new node
are taken.

-​ Other nodes are
compared again in
future checks.

-​ Assumed that this
node is a shorter
distance.

-​ Adjoining nodes may
not be shortest path
so may need to
backtrack to
previous nodes.

Search Type Description Algorithm

Binary Search
Recursive

-​ Requires the list to be
sorted in order to
allow the appropriate
items to be
discarded.

-​ It involves checking
the item in the
middle of the bounds
of the space being
searched.

-​ It the middle item is
bigger than the item
we are looking for, it
becomes the upper
bound.

-​ If it is smaller than
the item we are
looking for, it

becomes the lower
bound.

-​ Repeatedly discards
and halves the list at
each step until the
item is found.

-​ Is usually faster in a
large set of data than
linear search because
fewer items are
checked so is more
efficient for large
files.

-​ Doesn't benefit from
increase in speed
with additional
processors.

-​ Can perform better
on large data sets
with one processor
than linear search
with many
processors.

Binary Search
Iterative

Linear Search -​ Start at the first
location and check
each subsequent
location until the
desired item is found
or the end of the list
is reached.

-​ Does not need an
ordered list and
searches through all
items from the
beginning one by
one.

-​ Generally performs
much better than
binary search if the
list is small or if the
item being searched
for is very close to
the start of the list

-​ Can have multiple
processors searching
different areas at the
same time.

-​ Linear search scales
very with additional
processors.

Summary

 Worst Case Best Case

Bubble Sort n² n

Insertion Sort n² n

Merge Sort n log n n log n

Quick Sort n² n log n

Binary Search log_2 (n) 1

Linear Search n 1

	2.3 Algorithms
	

