OCR A-Level Computer Science Spec Notes
2.3 Algorithms

2.3.1 Algorithms
(a) Analysis and design of algorithms for a given situation
Algorithms: Set of instructions that complete a task when execute
- Algorithms run by computers are called 'programs'’
- Scale algorithms by:
e The time it takes for the algorithm to complete
e The memory/resources the algorithm needs. 'space’.
e Complexity (Big O notation)

(b) The suitability of different algorithms for a given task and data set, in terms of execution time
and space
There are different suitable algorithms for each task
e Space efficiency:
- The measure of how much memory (space) the algorithm takes as its input (N) is scaled
up
- Space increases linearly with N
- Code space is constant/data space is also constant
e Time efficiency
- Measure of how much time it takes to complete an algorithm as its input (N)
increases
- Time increases linearly with N
- Sum of numbers = n(n+1) /2
e Big O notation
- Refer to ((c) Measures and methods to determine the efficiency of algorithms (Big
O) notation (constant, linear, polynomial, exponential and logarithmic complexity))

(c) Measures and methods to determine the efficiency of algorithms (Big O) notation (constant,
linear, polynomial, exponential and logarithmic complexity)
(Big O) notation
- Shows highest order component with any constants removed to evaluate the complexity
and worst-case scenario of an algorithm.
- Shows how time increases as data size increases to show limiting behaviour.

Big O Notation
e O(1) - Constant complexity e.g. printing first letter of string.
O(n) - Linear complexity e.g. finding largest number in list.
O(kn) - Polynomial complexity e.g. bubble sort.
O(k*n) - Exponential complexity e.g. travelling salesman problem.
O(logn) - Logarithmic complexity e.g. binary search

(d) Comparison of the complexity of algorithms
Complexity
- Complexity is a measure of how much time, memory space or resources needed for an
algorithm increases as the data size it works on increases.
- Represents the average complexity in Big-O notation.
- Big-O notation just shows the highest order component with any constants removed.
- Shows the limiting behaviour of an algorithm to classify its complexity.
- Evaluates the worst case scenario for the algorithm.

Types of Complexity
Complexity Description Graph
Constant - Time taken for an algorithm stays the same
complexity regardless of the size of the data set
0o(1) - Example: Printing the first letter of a string. No
matter how big the string gets it won't take longer to
display the first letter.
Linear - This is where the time taken for an algorithm
complexity increases proportionally or at the same rate with
O(n) the size of the data set.

- Example: Finding the largest number in a list. If the
list size doubles, the time taken doubles.

Polynomial - This is where the time taken for an algorithm
complexity increases proportionally to n to the power of a
O(kn) (where constant.
k>=0) - Bubble sort is an example of such an algorithm.
Exponential - This is where the time taken for an algorithm
complexity increases exponentially as the data set increases.
O(k™n) - Travelling Salesman Problem = example algorithm.

(where k>1) - The inverse of logarithmic growth.

- Does not scale up well when increased in number of
data items.

Logarithmic
complexity
O(log n)

This is where the time taken for an algorithm
increases logarithmically as the data set increases.
As n increases, the time taken increases at a slower

rate, e.g. Binary search.

The inverse of exponential growth.
Scales up well as does not increase significantly
with the number of data items.

(e) Algorithms for the main data structures (stacks, queues, trees, linked lists, depth-first

(post-order) and breadth-first traversal of trees)

Data Structures Description Algorithm
Stack PUSH - When a data item is PROCEDURE AddToStack (item):
added to the top of a IF top == max THEN
stack stackFull = True
ELSE
top = top + 1
stack[top] = item
ENDIF
ENDPROCEDURE
Stack POP - When a data item is PROCEDURE DeleteFromStack (item):
removed from the IF top == min THEN
tOp ofa stack EL:;ackEmpty = True
stack[top] = item
top = top - 1
ENDIF
ENDPROCEDURE
Queue PUSH - When a data item is PROCEDURE AddToQueue (item):
added to the back of IF ((front - rear) + 1) == max THEN
da queue queueFull = True
ELSE
rear = rear - 1
queue [rear] = item
ENDIF
ENDPROCEDURE
Queue POP - When a data item is PROCEDURE DeleteFromQueue (item) :

removed from the
front of a queue

IF front == min THEN
queuekEmpty = True
ELSE
queue[front] = item
front = front + 1
ENDIF

ENDPROCEDURE

Linked List
(Output in
Order)

- When the contents
of a linked list are
displayed in order

FUNCTION OQutputLinkedListInOrder {():

Ptr = start wvalue
REPEAT
Go to node(Ptr value)
QUTPUT data at node

Ptr = value of next item Ptr at node

UNTIL Ptr = 0
ENDFUNCTION

Linked List (Add
item to list)

- When a data item is
added anywhere on a
linked list

FUNCTICN SearchForItemInlLinkedList ():

Ptr = start walue
REFEAT
Go to node (Ptr value)
TF data at node == search item
JUTPUT AND STOP

ELSE

Ptr value of next item PLr at node

ENDLE
UNTIL Ptr = 0O
OUTPUT data item not found

ENDEFUNCTICN

Tree
Traversal

Description

Algorithm

Depth first
(post-order)

Visit all nodes to the left
of the root node

Visit right

Visit root node

Repeat three points for
each node visited

Depth first isn't
guaranteed to find the
quickest solution and
possibly may never find
the solution if no
precautions to revisit
previously visited states.

FUNCTION «fs({graph, node, visited):
markhllVertices (notVisited)
createsStack(
start = currantioce
markAsVisited(starct)
pushIntoStack{start)
WHILE StackIsBEmpty () false

popFromStack {currentNode)

WHILE allNadesvVisitad() false

markisvisited{currentNode)

//following sub-routine pushes all nodes

/fcurrentNode AND that are unvisited
pushlUnvisitedidijacants ()
ENODWHILE
ENDWHILE
ENDFUNCTION

connected to

Breadth
first

Visit root node

Visit all direct subnodes
(children)

Visit all subnodes of first
subnode

Repeat three points for
each subnode visited
Breadth first requires
more memory than Depth

FUNCTION bfs (graph, node):
markdllVertices (notVisited)
createQueus ()
start = currantiNoce
markAsVisited(start)
pushIntoQueus (starl)

WHILE QueualsEmpty () false
popFromQueus {currentNods)
WHILE allNodesVisitedl() false

markfisvisited (currentNode)

Jifollowing sub-routine pushes all nedes connected to
ﬁl’St SeaI'Ch. /focurrentNode AND that are unvisited
It is Slower lf you are pushUnvisitedAdiacants ()
looking at deep parts of o
the tree ENDFUNCT ION
(f) Standard algorithms (bubble sort, insertion sort, merge sort, quick sort, Dijkstra's shortest
path algorithm,A* algorithm, binary search and linear search)
Sort Description Algorithm
Bubble Sort Is intuitive (easy to PROCEDURE (items) :
understand and program) swapMade = True
but inefﬁCient. WHTILE swapMada == Trus
Uses a temp element. swapiade - False
Moves through the data position = 0
in the list repeatedly ina FOR position = 0 TO lengch{list) - 2
linear Way IF items|[position] > items|[position + 1] TIEH
Start at the beginning temp = items[pesiticn]
and compare the ﬁrst items[ccunt] = items[count + 1]
item Wlth the SeCOIld. items|[count +] = temp
If they are out of order, Sraphade - drne
swap them and set a FHRTE
HNEXT positian

variable swapMade true.
Do the same with the
second and third item,
third and fourth, and so
on until the end of the
list.

When, at the end of the
list, if swapMade is true,
change it to false and
start again; otherwise, If
it is false, the list is
sorted and the algorithm
stops.

ENLDWIIILE
PEINT (items)
ENDFROCEDURE

Insertion Works by dividing a list PROCEDURE TInsertionSort (list):
Sort into two parts: sorted item = length(list)
and unsorted FOR index 1 TO item - 1
Elements are inserted curf;‘f‘t’“"‘lu*f‘ - rerbindexd
. . sosition = index
one by one l.l'].to t]:lelr ;IHILE. position > 0 AND list|peosition - 1] > currentvalue
correct position in the Liot (position] = list[position - 1]
sorted section by posilion - posilion - 1
shufﬂing them left until ENDWHILE
they are larger than the list[position] = currentvalue
item to the left of them NEXT dndex
until all items in the list FHDPROCEDIRE
are checked.
Simplest sort algorithm
Inefficient & takes longer
for large sets of data
Merge Sort Works by Splitting n data PROCEDURE MergeSort (listhA, listB):

items into n sublists one
item big.

These lists are then
merged into sorted lists
two items big, which are
merged into lists four
items big, and so on until
there is one sorted list.
Is a recursive algorithm =
require more memory
space

Is fast & more efficient
with larger volumes of
data to sort.

» = 0
b 0
n =20
WHILE length(listA) > 1 AND length(listB) > 1
IF listA(a) < listB(b) THEN
newlist(n) = listhA(a)
a a + 1
ELSE
newlist(n) = listh(b)
b = b + 1
ENDIF

n=n-+1

ENDWHILE

WHILE Tength(listhA) = 1
newlisti(n) = listd(a)
a=a+1

n=n-+1

FNOWHTTLE

WHTTE length(1istB) > 1
newlist(n) = 1istB(b)
E=5b | 1
n-=-n+1

ENDWHILE

ENDPROCEDURE

Quick Sort

Uses divide and conquer
Picks an item as a ‘pivot’.
It then creates two
sub-lists: those bigger
than the pivot and those
smaller.

The same process is then
applied
recursively/iteratively
to the sub-lists until all
items are pivots, which
will be in the correct
order.

Alternative method uses
two pointers.

Compares the numbers at
the pointers and swaps
them if they are in the
wrong order.

Moves one pointer at a
time.

Very quick for large sets
of data.

Initial arrangement of
data affects the time
taken.

Harder to code.

PROCEDURE QuickSort {list, leftPtr, rightPcor):

leftPtr = list[start]

rightPtr listlend]

WHILE leftPtr! != rightPcr

WHILE list[leftPtr] < list[rightPtr] AND leftPtr! != rightPtr

leftPtr leftPor + 1

EHMDWHILE

Tenp list[leftPorx]

ist|[leftPor = listlrightPtr]

lisk[ri LPLr] = Lemp

WHILE list[leftrPtr] < list[righcPtr] AND leftrPrr! != rightrtr
rightPtr = rightPtr

FHOWHTLE

temp = listc[leftFir]
list[leftptr] = list[rightPtr]
list[rightPLtr] = Lemp

ENDWHILE

EHDPROCEDUERER

Path Algorithms

Description

Algorithm

Dijkstra’s
shortest path
algorithm

- Finds the shortest
path between two
nodes on a graph.

- It works by keeping
track of the shortest
distance to each
node from the
starting node.

- It continues this until
it has found the
destination node.

TUNCTION Dljkslra ():

start node distance from itself =10
all olther nodes distance [rom starl nede = inlinily

WHTLE destinaticn de = unvisited

currenl node = closesl unvisiled node Lo A // inillally Lhis will be A ilsell
FOR every unvisited node connected to current node:
dislance = dislance Lo currenl node + dislance ol edge Lo unvisiled node
T¥ distance < currently recorded shortest distance THEN
dislance = new shorlesl dislance
NEXT connected node
currenl node = visiled
FNDWHTTE
ENDFUNCTION

A* algorithm

Improvement on
Dijkstra’s algorithm.
Heuristic approach
to estimate the
distance to the final
node, = shortest path
in less time

Uses the distance
from the start node
plus the heuristic
estimate to the end
node.

Chooses which node
to take next using the
shortest distance +
heuristic.

All adjoining nodes
from this new node
are taken.

Other nodes are
compared again in
future checks.
Assumed that this
node is a shorter
distance.

Adjoining nodes may
not be shortest path
so may need to
backtrack to
previous nodes.

FUNCTION AStarSearch ():

start node = current node
WHTTLE deslinzlion node = unvisiled

FOR each open node directly connected to the
Add to the list of open nodes.
g = distance from the start
h = heuristic estimate of the distance let
[g + h

NEXT connected node

current. node = unvisited node with lowest wa

ENDWHTLE

ENDFUNCTION

current node

t

lue

Search Type

Description

Algorithm

Binary Search
Recursive

Requires the list to be
sorted in order to
allow the appropriate
items to be
discarded.

It involves checking
the item in the
middle of the bounds
of the space being
searched.

It the middle item is
bigger than the item
we are looking for, it
becomes the upper
bound.

If it is smaller than
the item we are
looking for, it

FUNCTTON BinarysS (lisl, walue, lelLPLr, ri
I[P rightPr < leftLPLr THEN
RETURN error message
FNDT L
mid = (leftPtr + rightPtr)/2)
IF list[mid] > walue THEN
RETURN BinaryS (list, wvalue, lelLPLr
ELSEIF lisL[mid] < walue THEN
RETUEN BinarvysS (list, wvalue, mid+l,
ELSE
RETURN mid
ENDFUNCTION

ghlLPLr):

, mid-1)

rightPtr)

Binary Search
Iterative

becomes the lower
bound.

Repeatedly discards
and halves the list at
each step until the
item is found.

Is usually faster in a
large set of data than
linear search because
fewer items are
checked so is more
efficient for large
files.

Doesn't benefit from
increase in speed
with additional
Processors.

Can perform better
on large data sets
with one processor
than linear search
with many
Processors.

STHCTICON BinaryS (liskt, value, leftPtr, rightPtr):
Found = False
IF rightPtr < leftFtr THEHN
RETURY =rror message
EHMDIE
N ound == False
mic = {leftPtr + rightPtr) /s 2)
IF list[mic > walue TIEHN
rightPtr = mid -
ELSEIF a2t [mid valus THREH
leftPir = mid + 1
] H.
Found = Trues
ENDIZ
SHDWE L LE
RETUEH mid
EHNDETHCTION

Linear Search

Start at the first
location and check
each subsequent
location until the
desired item is found
or the end of the list
is reached.

Does not need an
ordered list and
searches through all
items from the
beginning one by
one.

Generally performs
much better than
binary search if the
list is small or if the
item being searched
for is very close to
the start of the list
Can have multiple
processors searching
different areas at the
same time.

Linear search scales
very with additional
processors.

FUNCTION LinearS (list, wvalue):

Ptr = 0

WHILE Ptr < length(list) AND list[Ptr]
Ptr = Ptr + 1

ENDWHEILE

TF Ptr >= length(list) THEN
PRINT ("Item i1is not in the 1ist")

ELSE
PRINT ("Item is at location "+Ptr)

ENDIF

ENDEUNCTION

1=

value

Summary

Worst Case Best Case
Bubble Sort n? n
Insertion Sort n? n
Merge Sort nlogn nlogn
Quick Sort n? nlogn
Binary Search log_2 (n) 1
Linear Search n 1

	2.3 Algorithms
	

