ОКСИДЫ. КЛАССИФИКАЦИЯ. ПОЛУЧЕНИЕ. СВОЙСТВА.


Оксиды - это сложные вещества, состоящие из двух химических элементов, один из которых кислород, со степенью окисления -2.

Лишь один химический элемент - фтор, соединяясь с кислородом, образует не оксид, а фторид кислорода OF_2 .

Называются они просто - "оксид + название элемента" (см. ниже). Если валентность химического элемента переменная, то указывается римской цифрой, заключённой в круглые скобки, после названия химического элемента.

Формула	Название	Формула	Название
CO	оксид углерода (II)	Fe ₂ O ₃	оксид железа (III)
NO	оксид азота (II)	CrO ₃	оксид хрома (VI)
N_2O_5	оксид азота (V)	Mn ₂ O ₇	оксид марганца (VII)

Классификация оксидов.

Основным оксидам соответствуют основания, **кислотным**-кислоты. К основным относятся оксиды металлов главных подгрупп I-II групп, а также металлы побочных подгрупп со степенью окисления +1 и +2 (кроме цинка и беррилия). К **кислотным** относят оксиды неметаллов, кроме несолеобразующих, а также оксиды металлов побочных подгрупп со степенью окисления от +5 до +7 (CrO_3 -оксид хрома (VI), Mn $_2O_7$ - оксид марганца (VII)). Основные реагируют с кислотами, кислотные с основаниями. Третья группа оксидов, реагирует как с кислотами, так и с основаниями, они называются амфотерными. К ним относятся оксиды металлов главных и побочных подгрупп со степенью окисления +3, иногда +4, а также цинк и бериллий. Т.е. характер свойств оксидов в первую очередь зависит от степени окисления. Например оксиды хрома CrO(+2 основный)->Cr $_{2}O_{3}(+3 - amфотерный)->CrO_{3}(+6 - кислотный).$ В периодической системе в группах слева направо ослабляются основные свойства, усиливаются-кислотные. Сверху вниз в группах усиливаются основные, ослабляются кислотные.

Получение оксидов.

Organización de la companión d	простых веществ	2MgO +O ₂ =2MgO
Окисление кислородом	сложных веществ	$2H_2S + 3O_2 = 2H_2O + 2SO_2$
Разложение	нагреванием солей	$CaCO_3 = CaO + CO_2^{\uparrow}$

	нагреванием оснований	Cu (OH) ₂ =CuO+H ₂ 0
	нагреванием кислородсодержащих кислот	$H_2SO_3=H_2O+SO_2^{\uparrow}$
	нагреванием высших оксидов	$4CrO_3 = Cr_2O_3 + 3O_2 \uparrow$
Окисление низших оксидов	4FeO+O ₂ =2Fe ₂ O ₃	
Вытеснение летучего оксида менее летучим	$Na_2CO_3+SiO_2=Na_2SiO_3+CO_2$	

Химические свойства оксидов.

Основные	Амфотерные	Кислотные
соответствуют основания. 1.Взаимодействие с водой (оксиды щелочных и щелочноземельных мет.) $CaO+H_2O=Ca(OH)_2$ 2.Все-с кислотами	Амфотерные (ZnO, Al_2O_3 , Cr_2O_3 , MnO_2) 1.Взаимодействуют как с кислотами, так и с основаниями. $ZnO+2HCl=ZnCl_2+H_2O$	Кислотные-реагируют с избытком щелочи с образованием соли и воды. Кислотным оксидам часто соответствуют кислоты. 1.5 ольшинство взаимодействуют с водой $SO_3+H_2O=H_2SO_4$
$3.C$ кислотными оксидами $CaO+CO_2=CaCO_3$ $4.C$ амфотерными оксидами $CaCU$	ZnO+SiO ₂ =ZnSiO ₃	 2.Со щелочами NaOH+SiO₂=Na₂SiO₃+H₂O 3.С основными оксидами SiO₂+CaO=CaSiO₃ 4.С амфотерными оксидами Al₂O₃+3SO3=Al₂(SO₄)₃