passbolt $

Passbolt Security v3
UX and Security Evolutions

Abstract: This document is aimed at security advisors to help guide the design of future
evolutions of the passbolt product, as part of the work scheduled on the v3 roadmap. It
focuses on items that have the biggest impact on the security model. It tries to describe the
possible approaches from a high level perspective and how they will affect / integrate with the
current security model.

Status: DRAFT
Diffusion: PUBLIC CC BY-SA 3

Change history

Date Author Changes

28/09/2020 | Remy Initial version

11/12/2020 Thomas / Remy Revised threat model & passphrase schemes &
authentication

27/01/2021 Wojciech / Michat Mobile recommendations

05/02/2021 Remy Escrow & cleanup



passbolt $

Table of index

Introduction
Business goals
Current situation
Type of data
Keys
Data
Threat model
Residual risks
New requirements & assumptions

Proposed solutions
Remove the need for the user to enter an OpenPGP key passphrase
In the browser
Additional risks (Browser)
On Mobile
On Android
On I0S
Additional risks (Mobile)
Enable cross-device secret key transfer using QR Codes
Requirements & constraints
Selected solution
Protocol definition
Sequence
Possible Transfer Statuses
Additional risks
Add optional escrow key
Additional risks
Add support for multiple authentication schemes
Supported schemes
GpgAuth
LDAP authentication
OpenlD Connect

N O 0o~ MDD OO

o

©

11
12
13
15
16
16
16
19
19
20
20
22
22
23
23
23
24
25



passbolt -

Introduction

Business goals

Here are some common comments from our current users:
“As a user I want to access my secrets on a mobile device.”

“As a user I don’t want to have to retype a password every time I need to access a secret
in passbolt.”

“As an admin I want to be able to help users get access to data even if they lost their
secret key or passphrase.”

“As an admin I don’t want my users to have to remember another password for passbolt.
If they have to enter a password it should be the same as the one provided by our
organization's main authentication provider.”

“As an admin I want to be able to enforce authentication using the provider selected by
my organization e.g. Active Directory or Google, etc.”

Passbolt is currently doing an okay job at hiding key management for authentication,
encryption and decryption. However because of end to end encryption design constraints it
does fall short in providing an experience closer to a regular web application.

From a user (or even administrator) perspective it should be enough to be able to authenticate
in order to decrypt the content stored inside passbolt. An administrator should be able to reset
the means of authentication, they should be able to access the data when someone leaves.

All of these requirements are obviously not playing well with the targeted level of security. In

this document we try to propose some evolutions to improve the usability of the solution
without drastically lowering the security of passbolt.

PUBLIC CC BY-SA 3/26



passbolt $

Current situation

In this section we summarize the current state so that the proposed solutions can be evaluated
from that starting point. More information can be found in the security whitepaper.

Type of data

Here is a quick summary of the current type of data and where they sit in which form.

Keys
Type of keys Client Memory | Client storage @ Server Side
OpenPGP Secret Key Decrypted Encrypted No
OpenPGP Public Keys Yes Yes Yes
OpenPGP Secret Key Passphrase Decrypted No No

Passbolt relies on public key cryptography, and OpenPGP in particular, to encrypt data. The
user secret key is generated (or imported) on the device and never leaves the device. The
secret key is encrypted with the user passphrase and persisted in that form in the client
storage. Similarly the passphrase never leaves the device, and is not persisted in the client
storage / only kept in memory. Public keys are synchronized with the server and authentication
is required to fetch or change keys.

Data
Type of data Client Memory @ Client storage = Server Side
Resource (metadata, ex. “name”) Yes Cached Yes
Resource types & schemas Yes Cached Yes
Secret (ex. “password”) Decrypted No Encrypted

Data in passbolt is divided into two parts: the searchable non encrypted metadata called
“resource”, and the encrypted part containing for example the passwords called “secret”. The
secret is never stored on the client and downloaded from the server when needed, allowing to
track access (provided the user doesn't make a local copy of course). Secrets are encrypted
once per user that has access, allowing the delete access server side (e.g. without having to
re-encrypt the secret).


https://docs.google.com/document/d/1R2pi4g9T2tiXmuEov_HXNkn80Dik2ZdKGN-QtuHKwi4/edit#

passbolt $

The schema that describes what is included in the resource and secret is defined using
“resource types”, which take the form of two JSON schemas. These schemas can be used to
control the data validation process when (de-)serializing data. These schemas can be
downloaded from the server by the client, but the default ones are generally hard coded
directly in the client.

Threat model

Here is a quick list of the current threats and type of attacks:

1.

10.

11.

Data leak. An attacker is able to read the content of the passbolt server database, for
example via a leak.

Web page compromise (XSS). An attacker is able to execute JavaScript on the passbolt
server instance domain.

3rd Party Authentication server compromise. An attacker is able to login in passbolt via
an issue in a third party system.

Network compromise. An attacker is able to perform a Man in the Middle (Miim) attack
and intercept/modify network traffic.

Passbolt Server compromise. An attacker is able to edit the content of the passbolt
server database and/or server side logic.

Content script compromise (XSS). An attacker is able to execute JavaScript in the
context of a content script (or iframe inserted by content script) and therefore have
access to encrypted browser extension storage (local, IndexedDB) and decrypted
information inserted on the page (for example decrypted secret in an edit dialog).

Background page compromise (XSS). An attacker is able to execute code in browser
extension and access decrypted secret keys in memory.

Browser exploit. An attacker is able to read browser extension memory or browser
memory, from a regular web page or another malicious extension installed by the user.

Extension / Application marketplace exploits. An attacker is able to forge developer
signatures and publish a malicious version of the extension / application.

Client System compromise. An attacker has partial or full system access.

Phishing. An attacker is able to convince the user to upload both the secret key and
passphrase and optionally 2FA token.


https://json-schema.org/

Residual risks

passbolt $

As a quick summary the following risks are deemed acceptable:

e Auvailability: the client is not able to access plaintext secret if the network or passbolt
server or optional 3rd party 2FA authentication provider is down.

e Integrity: there is no expectation of data integrity if the passbolt server or network layer is

compromised.

e Confidentiality: An attacker is able to access plaintext secrets if the client machine or
browser extension background page is compromised, e.g. attacker has access to the
browser extension / browser / OS memory.

Here is the list of accepted residual risks:

Threats

Data leak

Web page compromise

3rd party auth compromise

Network compromise

Passbolt Server compromise

Content script / Iframe content
code compromise

Background page compromise
Browser exploit

Extension marketplace exploits
System compromise

Phishing

Scope

In-scope

In-scope

In-scope

In-scope

In-scope

Out of scope
Out of scope
Out of scope
Out of scope

Out of scope

Residual Risks (An attacker can...)

Access encrypted messages & resource
metadata

Idem +
Affect integrity / availability of data

I[dem

Idem +
Inject malicious public keys

Idem

Idem +
Access decrypted content in workspace
Access encrypted secret key

Full access
Full access
Full access
Full access

Full access



passbolt $

New requirements & assumptions
The new requirements and associated assumptions are as follow:

e The user should not have to enter another passbolt-specific passphrase to decrypt the
secret key and ultimately decrypt / sign content, unless they (or their administrators)
explicitly want this.

e The user must be able to transfer and use their secret key on other devices.

e The solution must not require the encrypted secret key to be stored server side to work.
This is to protect the end to end encryption scheme and prevent an attacker from being
able to perform a bruteforce attack on the secret key. It is also driven by the end user
expectations, especially the ones who for example reuse their secret key for email
encryption.

e The user must be able to authenticate using another system, through passbolt directly or
using redirect / alternative flows such as the ones supported by OpenlID connect. These
3rd party credentials must not be stored in passbolt.

e Having access to the 3rd party credentials (or breaking the authentication) must not be
enough to decrypt the data.

e Having read-only access to file system data on the client, for the same user, shouldn’t be
sufficient to decrypt the data.

e Having access to the chrome.storage APl must not be enough to decrypt the data. In
other words a XSS in a web extension content script must not be enough to decrypt the
data. Therefore the user secret key and the passphrase should not be stored
unencrypted in the local storage.

e No additional hardware should be required.



passbolt $

Proposed solutions

Remove the need for the user to enter an OpenPGP key passphrase

In a nutshell the idea is to remove the need for a secret key passphrase to be entered by the
user if that configuration is desired.

In practice, if the administrator chooses to enable and/or enforce this optional passphrase-less
mode, the OpenPGP secret key passphrase will still exist, but it will be randomized for the
device during the setup (after the creation of a recovery kit with a user selected passphrase),
and will be stored encrypted. To encrypt this passphrase the application will use a
“non-extractable” key stored on the browser or device (in case of mobile phones). By non
extractable we mean that if the extension background page or mobile app process is
compromised, an attacker may be able to use the app's keys but cannot extract their key
material (for example, to be used outside of the client / device context).

In the case of mobile apps, the encrypted passphrase will be stored in a secure location. In the
case of the webextension, since the non-extractable key usage does not require another device
password or biometric authentication, then we propose to store the encrypted passphrase
server side, so that we can still perform another form of authentication (if needed).

In practice the new key landscape will look like:

Type of keys Client Memory | Client storage @ Server Side
OpenPGP Secret Key Decrypted Encrypted No
OpenPGP Public Keys Yes Yes Yes
OpenPGP Secret Key Passphrase Decrypted No Encrypted *
Non extractable device/client specific Available Not extractable = No

keys, to encrypt passphrase.”

* optional, and only in for webextension



In the browser

Browser
Storage

DK - Device Local Key
Unextractalie
InclexedDE

passbolt -

Browser
Memory

Network &
Server

Fatch
(authenticated)

F1 - Encrypled Passphrase
Ertcrypted + Encryoted at restiransit
Mermory

B1 - Encrypled Passphease

Encrypled
Marmary

Crypin.Subtle
Decrypt

optional

SK1 - DpenPGP Private Key
Encrypted
chrome.stanage

PO - Cleartext Passphrase

¥

R0 - Resource Metadata (Cache)
Chisartind
Chrorm, Storc

Dacrypted
Mamarny [Backgraund Script)

OpenPGRje
key.decrypt

SKD - OpenPGP Private Key (PO)
Decrynted —
Memary (Background Script)

required

A1 - Resource metadata
Cleartex! + Encrypted in transil
REST ARI

SM1 - Secret! OpenPGP Message
Ercrypted = Encrypled at restAransit
REST AP

SM1 - Secret / OpanPGP Maessage
Encrypted
Memarny {Background Scripty

CpanPGFRjs
Decrypt & Verify

SMO - Secret £ Plaintmd
Decrypled
Mamary (& DOM optional)

PUBLIC CC

BY-SA

Fig. steps and data by location for decryption in the browser

9/26



passbolt -

During the setup the extension generates an asymmetric key with the Web Crypto API
crypto.subtle.generateKey. The key will be generated with the parameter extractable
set to false, which means the key can be used but the subtle key material cannot be exported.
IndexDB is used to store these keys.

The Web Crypto API ensures that a CryptoKey with extractable set to false cannot be exported.
How such a key is stored in IndexedDB is not defined, and as IndexedDB does not have an
encrypted storage on the file system we can assume that the secret key material is not
protected on the file system level.

Reference:

e https://developer.mozilla.org/en-US/docs/\Web/API/SubtleCrypto/generateKey

Sample code:

e https://gist.github.com/saulshanabrook/b74984677bccd08b028b30d9968623f5

Additional risks (Browser)

Risk type Counter measure Residual Risk

“Subtle key” does not support Move the encrypted passphrase TBD
biometric authentication server side to perform
authentication there.

Background page “subtle key” TBD TBD
can be extracted.

“Subtle key” does not persists Manually passphrase entry TBD
required. “Original passphrase” is
made part of a recovery kit.


https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/generateKey
https://gist.github.com/saulshanabrook/b74984677bccd08b028b30d9968623f5

passbolt -

On Mobile

Mobile Network &
Memory Server

Mobile
Storage

DK - Device Local Key
Urinctractatila
Keystare or Keychain

P1 - Pasephrase
Encrypted
File (#pplication Folden) or Keychein

optional

required

5K1 « OpenPGP Private ey H PO - Cleartext Passphrase
Encrypted : Deascrypbed
File (Application Folden / ar Keychain H Marmany [Appication)

: Al - Resource metadata
Goopengp + Cleartest + Encrypted in transit
key.decrypt : FEST AP

SKO - OpenPGP Private Key (PO) M1 = Secret! OpenPGP Message
Decrypted — Ercrypted + Encryobed at rest/iransit

Mermary (Application) REST AP

M1 - Secret / OpenPGP Message
Encrypted
Memary {Application)

Goopengp
Dacrypt & Varify

¥

R0 - Resource Metadata (Cache)
Clesarteod
Filee (ayaplication Foloer

MO - Secret / Plaintaxt
Decrypted
Mamary (& 3rd party app optional)

Fig. steps and data by location for decryption on mobile app

PUBLIC CC BY-SA

11/26



passbolt $

On Android

Android security guidelines suggest storing data in the device's internal storage. Internal
storage is sandboxed per app on OS level so other apps can’t access the files (unless apps
belong to the same developer (are signed with the same certificate) or the device is rooted or
an attacker uses specialized tools). Using internal storage doesn’t require asking the user for a
permission at runtime. When the user uninstalls an app, the device deletes all files that the app
saved within internal storage. We can additionally use encryption on a file level (this is
important especially for rooted devices).

We propose to build the key management system on top of the Android Keystore system. Its 2
part system for key management consists of:

e Device local key: a primary AES256-GCM key that encrypts all keysets. This key is
stored using the Android keystore system.

e A keyset that contains one or more keys to encrypt a file or shared preferences data.
The keyset itself is stored in the mobile application SharedPreferences.

The local device key is always stored in a Trusted Execution Environment. It is protected from
extraction using two security measures:

e Key material never enters the application process. When an application performs
cryptographic operations, behind the scenes plaintext, ciphertext, and messages to be
signed or verified are fed to a system process which carries out the cryptographic
operations.

e Because key material is bound to the secure hardware (e.g., Trusted Execution
Environment (TEE), Secure Element (SE)) of the Android device, it is never exposed
outside of secure hardware. If the Android OS is compromised or an attacker can read
the device's internal storage, the attacker may be able to use any app's Android
Keystore keys on the Android device, but not extract them from the device.

When creating a Master Key, we can specify additional configuration parameters. The most
important ones are:

e userAuthenticationRequired and userAuthenticationValiditySeconds can be
used to create a time-bound key. Time-bound keys require authorization using
BiometricPrompt for both encryption and decryption of symmetric keys.

e unlockedDeviceRequired sets a flag that helps ensure key access cannot happen if
the device is not unlocked.


https://github.com/sensepost/objection/wiki/Patching-Android-Applications#patching---patching-an-apk
https://developer.android.com/training/articles/keystore

passbolt -

e Use setIsStrongBoxBacked, to run crypto operations on a stronger separate chip. This
has a slight performance impact, but is more secure.

e setInvalidatedByBiometricEnrollment sets whether this key should be invalidated
on fingerprint enroliment. By default, it is set to true, so keys that are valid for fingerprint
authentication only are irreversibly invalidated when a new fingerprint is enrolled, or
when all existing fingerprints are deleted. That may be changed by calling this method
and passing false as an argument. Invalidating keys on enroliment of a new finger or
un-enrollment of all fingers improves security by ensuring that an unauthorized person
who obtains the password can't gain the use of fingerprint-authenticated keys by
enrolling their own finger. However, invalidating keys makes key-dependent operations
impossible, requiring some fallback procedure to authenticate the user and set up a
new key.

For profile and resource metadata our preferred approach would be to use a SQL compatible
database, for convenience. Google offers a library called Room which makes it easier and safer
to deal with databases on Android. There are other popular solutions like SglDelight. Both
options could be used in combination with SQLCipher, with a passphrase randomly generated
and stored and encrypted in the same fashion as the user passphrase.

Reference:

e https://developer.android.com/training/articles/keystore
e https://www.zetetic.net/sqlcipher/design/

Sample code

e https://github.com/passbolt/passbolt-poc-android/tree/master/app/src/main/kotlin/com
/passbolt/poc/util

On IOS

Applications on iOS are sandboxed, so they don’t have access to another’s app storage,
unless these applications are in the same App Group or the device is jailoroken. When the
application is uninstalled, all the data associated with the app is deleted as well. Application
files are encrypted by default when the device has set an active passcode. Application storage
is limited only by left space on the device.


https://developer.android.com/training/articles/keystore#HardwareSecurityModule
https://developer.android.com/training/data-storage/room
https://github.com/cashapp/sqldelight
https://www.zetetic.net/sqlcipher/sqlcipher-for-android/
https://developer.android.com/training/articles/keystore
https://www.zetetic.net/sqlcipher/design/
https://github.com/passbolt/passbolt-poc-android/tree/master/app/src/main/kotlin/com/passbolt/poc/util
https://github.com/passbolt/passbolt-poc-android/tree/master/app/src/main/kotlin/com/passbolt/poc/util
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_application-groups
https://developer.apple.com/documentation/uikit/protecting_the_user_s_privacy/encrypting_your_app_s_files#overview

passbolt -

We propose to build the key management system on top of the iOS Keychain service. Keychain
items are encrypted using two different AES-256-GCM keys: a table key (metadata) and a
per-row key (secret key). Keychain metadata (all attributes other than kSecValue) is encrypted
with the metadata key to improve search time, while secret value (kSecValueData) is encrypted
with the secret key. The meta-data key is protected by Secure Enclave but cached in the
application processor to speed-up keychain queries. The secret key always requires a
roundtrip through the Secure Enclave.

Keychain allows to choose the protection level of data stored inside. By default, keychain data
is accessible only when the device is unlocked. The list of all protection levels is described
here, but here are the one we propose using:

e The most strict option is kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly that
prevents the data to be backed up or synced with iCloud, what seems to be crucial in
the Passbolt app.

e We can also demand user authentication to access Keychain data. userPresence flag
lets the system choose appropriate authentication method (TouchlID, FacelD or a
passcode).

e There are more flags like biometryCurrentSet that constraints the keychain item for
currently enrolled fingers or from Face ID with the currently enrolled user. More
information about restricting access to the Keychain can be found here.

Our approach would be to store the user secret key and the passphrase as keychain items. For
the application data, such as resource metadata, similarly our preference would be to use SQL
compatible databases, such as SQLite (supported in iOS by default) or Realm or SQLCipher.

References:

Apple "Keychain data protection overview"
Apple "Restricting Keychain Item Accessibility"
Apple "App security overview"

Apple "Data Protection overview"

Apple "Encryption and Data Protection overview"
Apple App Group

Realm encryption overview

Sample code


https://developer.apple.com/documentation/security/keychain_services
https://support.apple.com/guide/security/keychain-data-protection-overview-secb0694df1a/web
https://developer.apple.com/documentation/security/secaccesscontrolcreateflags
https://developer.apple.com/documentation/security/keychain_services/keychain_items/restricting_keychain_item_accessibility
https://www.raywenderlich.com/9220-realm-tutorial-getting-started
https://www.zetetic.net/sqlcipher/ios-tutorial/
https://support.apple.com/guide/security/keychain-data-protection-overview-secb0694df1a/web
https://developer.apple.com/documentation/security/keychain_services/keychain_items/restricting_keychain_item_accessibility
https://support.apple.com/guide/security/app-security-overview-sec35dd877d0/1/web/1
https://support.apple.com/guide/security/data-protection-overview-secf6276da8a/web
https://support.apple.com/guide/security/encryption-and-data-protection-overview-sece3bee0835/1/web/1
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_application-groups
https://docs.realm.io/sync/using-synced-realms/encrypting-realms

passbolt -

e https://aithub.com/passbolt/passbolt-poc-ios/tree/master/Passbolt%20POC/Milestone

s/SecureStorage

Additional risks (Mobile)

Risk type

Rooted device

App patching

Biometric authentication bypass

(known fingerprint/FacelD
vulnerabilities)

Physical attack on user

Presence in RAM of
unencrypted data

Long “unlocked” time after
successful authentication

Counter measure
Root detection

Make sure that users download
app only from genuine stores

Optionally user can enter
passphrase to the app

Introduce emergency passphrase,
that locks/clears the app

Make sure that device is not
rooted, that prevents from memory
dump?

Choose appropriate time-bound
key for operations on secure
storage

Residual Risk
TBD

Out of scope

Out of scope

Out of scope

TBD

TBD


https://github.com/passbolt/passbolt-poc-ios/tree/master/Passbolt%20POC/Milestones/SecureStorage
https://github.com/passbolt/passbolt-poc-ios/tree/master/Passbolt%20POC/Milestones/SecureStorage

passbolt $

Enable cross-device secret key transfer using QR Codes

Requirements & constraints

As part of the setting up of a passbolt account on a new device, the user profile data and the
associated OpenPGP secret key needs to be transferred easily and securely between a
configured client and another non configured client, for example from the webextension to the
mobile device.

Since an OpenPGP RSA key is quite large it cannot be typed directly by the user, or transferred
using a single QR Code. Similarly it is not user friendly, and possibly insecure, to ask the user
to download and handle the secret key transfer manually through another channel of their
choice.

In order to limit residual security risks we also want to avoid transferring the secret key to the
same server where the encrypted messages are present. This might be counterintuitive but we
do not want to store the secret key server side even if it is encrypted with the passphrase or
through another one-off layer of symmetric encryption. One of the reasons is that there is a
strong expectation from users that the key will only stay on the device, especially for more
advanced users where an existing key, for example used also for email encryption, is imported
in passbolt.

Moreover to simplify the hosting (and therefore support) of the solution, we cannot introduce
additional server services and/or additional networking requirements. Therefore we cannot rely
on additional protocols, such as WebSocket or WebRTC. Finally that protocol should not be
device specific, e.g. it should be possible to reuse this method across similarly capable clients:
a mobile app, an extension, a native desktop app.

Selected solution

In a nutshell the solution relies on multiple QR Codes and an API on the server to synchronize
the pagination between the two clients. The minimum requirements for two clients to exchange
data are as follow:

Requirements Configured device Non configured device
Ability to generate / display QR Codes Required

Access to API server via HTTPs Required Required

Access to a camera Required

Ability to parse QR Codes Required



passbolt -

1. Login 2. Slarl mobilke ransfer 3./ 7, Display OR Code J 10. Transfer complete
— — —Q/

Web
Extension

[

i b

Sat nurmber of pagss ! Gl chrred Bage
...................................................................................................
Server Manags pagination ; Manags pagination
fiead fo from Ragquest page swilch &
OF Code | End procoss
4. Downlead ! Gpan App 5. Start moblle transfar &/ B. Scan OR code 9. Transfer complete

Mobile App — — —(\f—
1

In a nutshell the high level process from a user perspective is as follow:

1.

The user sets up their account using the webextension. The user login using the web
extension, goes to their settings, under the mobile section.

The user sees a page in the webextension explaining how the process works. They click
on a button to start the process, they are requested to enter their passphrase, in the
background the extension registers a transfer, and receives from the server an
authentication token to be used by the mobile phone to connect to the server later.

The users sees a QR code displayed in the webextension as well as a progress bar set
to the beginning.

The user downloads the mobile application from the marketplace and opens it.

By default on mobile there is no user profile, the user is showns a page explaining the
process and a button to get started. If there is already another profile configured for
another user account, the user can go to the mobile application settings and add
another profile.

The user starts the process, provides some authorization to use the mobile camera if
needed, and using the mobile phone scans the first QR code. The mobile uses the URL
contained in the QR code to request the next data page, it returns it gets information
about the total number of pages and a hash to assert the integrity of the data at the end
of the process.



passbolt $
7. The webextension reads the page change request from the server and displays the next
QR code.

8. The mobile application scans the QR and turns the next page. The process continues
until all the pages are read.

9. Once the last page is read the mobile application sets the transfer status to complete
and display a success screen. The user can then proceed to login using the private key.

10. Similarly a success message is displayed on the webextension side.

In the future we could easily imagine reversing the process with a desktop application or web
extension not configured that could, using the camera, read the profile information from the
mobile.



passbolt -

Protocol definition

Sequence

Sending Party Orchestration Party Receiving Party
Browser Ext API Server Mobife

Enter passphrase POST /mobileltransfers json : .
Mabile setup start {total_pages: int, hash: string} . .
Build package M
Calculate Hash Generate Auth token :
Calculate pages 200 Create transfer entity .

{id: uuid, authentication_token: object, status:started} N
Generate QR Codes .
Display 1st QR Code . : Open App

Start setup
Scan QR code picture

QR Code

{domain:URL, authentication_token:uuid, transfer_id: uuid, tptal_pages: int, hash: string}

N T

Loop for all pages .
. PUT /maobileftransfers/:uuid/:authentication_token json Update

{current_page: int, status: in progress} progress

Check authenticationToken

200
Update page {id: uuid, current_page: int, total_pages: int, status: string,
hash: string, user: object}
Loop for update :
(or long polling) GET /mobileftransfers/:uuid json

200
{id: uuid, current_page:int, status: in progress, ...}

Scan QR code picture

Update current page
Switch to next QR Code

QR Code
{user_id: uuid, fingerprint: uuid, armored_key: string}

. PUT /mobile/transfer/:uuid/:authentication_token json Validate hash
] {status: complete} Unpack data
o Test key
Check authenticationToken Display success

Update page 200
P pag {id: uuid, status: complete, ...}

GET /mobileftransfer/:uuid ]

200
{id: wuid, status: complete, ...}

Display transfer
completed

Fig. QR Code Exchange Sequence Diagram (Success Scenario)



passbolt -

Possible Transfer Statuses

...... start

oo in progress [ - error

complete cancel

Fig. QR Code Exchange State Diagram

As shown in the sequence diagram the ‘start’ state is created by the sending party and the rest
of the status updates are controlled by the receiving party. Generally the flow will be ‘start’, ‘in
progress’, ‘complete’.

However there is also the possibility for the post party to ‘cancel’, or set an ‘error’. The ‘error’
status can be used for example by the receiving party to retry a previous page for example if a
scanning failed.

The ‘cancel’ status can be used by both parties if the user requests to cancel the operation, for
whatever reason. Unlike the error status, and much like a complete status, the cancel status is
definitive.

Additional risks

Risk type Counter measure Residual Risk

Secret key capture using No key is sent over the network. None?
client/server MiiM

XSS in Web Extension shouldn’t | Display QR code in a separate TBD



passbolt $

provide access to secret keys. iframe to prevent access.

Unwarranted key export. Request passphrase before TBD
starting transfer.

CSRF Attack Unique authentication token and Out of scope
transfer ID.

DDos attack on server endpoint | CDN / WAP Firewall (Not provided) = Out of scope
affecting availability of service

3rd party applications snoop on | OS Level + Secret key is Out of scope
camera / screen and record. encrypted with passphrase.

3rd party camera / people OpSec + Secret key is encrypted | Out of scope
record screens from afar. with passphrase.

No sensitive data is transmitted over the network, but only client to client, the risks with regards
to the key confidentiality or integrity are reduced.

To protect the secret key further on the extension side, the process will only start after the user
enters their passphrase. The secret key QR code will be displayed in a separate iframe,
separate from the main application context, to protect the secret key in the context of XSS in
the main application.

Considering the transfer ID is random and unique and tied to a random and unique user
authentication token, there is no need to provide a CSRF token in the header like with other API
endpoints, for the mobile application.

Residual risks remain if an attacker has the ability to access the client memory and/or the
ability to view/record the browser screen, and/or has access to the camera. These types of
attacks are considered out of scope.

Similarly an attacker could affect the availability of the transfer if they are able to mess with the
pagination. By providing authentication for both clients we consider that this risk is limited
sufficiently. DDOS attacks are considered out of scope.



passbolt $

Add optional escrow key

Currently if a user loses their private key or passphrase, the secrets that have not been shared
with other users are lost. This design is intentional. However in some regulated environments
(banking, insurance, statecraft) administrators are legally required to have a way to access
encrypted data, for example to transfer secrets when a user leaves the organization.

To solve this problem we propose to introduce the concept of escrow key, and leverage the
existing “share” capabilities built in passbolt. In practice, the administrator configuring the
instance will generate an escrow private key and upload the associated public key.

We propose administrators will be allowed to select one of the following escrow modes:
e No escrow (Default). As it is currently.

e Escrow for shared password with opt-out option. All passwords that are shared with
more than one person will by default be subject to be encrypted with the escrow key.
However the user can “remove” the escrow account when sharing.

e Mandatory escrow for shared secrets. Same than previous but without the ability to
opt-out.

e Full escrow. All passwords require to be encrypted with the escrow key, including
personal secrets.

Additional risks

Risk type Counter measure Residual Risk

Not all secrets are in escrow by | Produce reports to show level of TBD
default if activated on an compliance with escrow policy.
existing instance. Trigger background process to

add missing secrets to escrow

after login for users.

Escrow key is misused by Recommend storing escrow key in | TBD
administrator or leaked 3rd party safe location with strong
authentication (bank safe?).

Escrow key is used without Send email notifications to other TBD
users knowledge administrators when the key is
used.

(TBD) Shamir secret sharing for
secret key passphrase.



passbolt $

Attacker replaces the escrow Escrow key changes require the TBD

key with his own to extract user manual approval.

secrets. Escrow key requires administrator
signature.

Add support for multiple authentication schemes

Unlike most password managers, passbolt is currently based on an authentication scheme
called GpgAuth that is based on a challenge that requires the secret key and passphrase (and
not, for example, a version of the passphrase that is hashed and sent to the server for
validation).

If we can validate the "Removing the need for the user to enter an OpenPGP key passphrase”
solution for the web browser, this system can not be used with this option enabled, as the
secret key and its passphrase are required for this authentication mode. However it could be
used after another method of authentication (say SSO), once the passphrase is recovered, for a
strong authentication based on the secret key.

Supported schemes

Authentication providers

Authentication mode GpgAuth LDAP OpenlID Connect
Current mode Yes No No
SSO without passphrase Optional after Yes Yes
SSO with additional passphrase After one other Yes Yes
GpgAuth

GpgAuth is the authentication provided by default by passbolt. It is a challenge based
mechanism where the user (and/or server) needs to prove they can decrypt a secret encrypted
with the user (and/or server) public key, and/or sign with the secret key.

More detailed information about each step can be found in the security white paper or the online
documentation.



https://help.passbolt.com/assets/files/Security%20White%20Paper%20-%20Passbolt%20Pro%20Edition.pdf
https://help.passbolt.com/tech/auth
https://help.passbolt.com/tech/auth

passbolt $

LDAP authentication

In this scheme the LDAP username and password are sent to the application. The application
builds the distinguished name, for example “uid=ada, ou=People,dc=passbolt,dc=com” (see.
DN or RDN) that is then sent with the password, performing an LDAP bind operation server
side to verify the authenticity of the credentials.

It offers several advantages:
e User friendly: same password used everywhere from the user perspective.
It offers several disadvantages:

e Security: prone to phishing, replay, brute force attacks... Password is sent to a 3rd party
service before being relayed.

e Introduce a single point of failure: if LDAP is unavailable the user cannot login. A
commonly used technique consists of caching the passwords locally in the application,
which in turn produces more issues (e.g. integration needs to be built to keep password
in sync for example, hashing may be weak in certain applications, etc.).


https://ldap.com/ldap-dns-and-rdns/
https://ldap.com/the-ldap-bind-operation/

passbolt -

Client Sarver

LOAP

Enter kagin wil GET flogin

200

Enter usemame
Enter passwond

POST Mogin (username;passwond)

Send login page

Biuild O from username and setlings
BIND (DN, password)

auth Success
oz

GET { (with auth cookse in header)
raquast main app paga

Sel aulh cookie & redirect

200

Send main app page

Fo

Succass

izlse

200

Sand login page with armor

Error
Inveld credantials, no such object, ato.

|

Fig. LDAP based authentication

OpenlD Connect

In decentralized authentication schemes such as OpenlID connect (OIDC), the client (in our

case the browser) is redirected from the relying party (in our case the passbolt instance), to an

authentication provider (a third party service), with the claim (user info) and the flows

(authentication scheme) they want to use.

The user must then authenticate against the 3r party authentication provider. Once
authenticated they will need to give trust to the relying party if it is not already trusted. Once

trust is given, the user is then redirected to the relying party with the credentials, typically in the
form of a token containing the user claim signed by the authentication provider. That claim is
then checked by the relying party using a secret previously shared between the relying party

and the authentication provider.




passbolt -

Cliant Ralying Party OpenlD Provider
GET Nogin 7 :
200 Send login page '
Select OpanlD as v
aut:bmﬂlﬁg GET open i (ex. ada.apanid.provider.camp :
GET dacovery requesi ™
200 apphcation/xrdg+xmi
GET associaba handia
200 shared secred
302 Redrect to OpeniD Provider T
GET authantication renuest : :
. -
: ¥ Radirect login page
POST cradantials :
mabop .
. 200 ask end user rusl of relying pary
POST trust relying party :
: 302 Redirect with credentials
GET lagin with credenlials
Check cradenlials
302/ using shared secret

Fig. OpenlD based authentication

There is a lot more to OpenlD connect than what’s the above. There are many variations of the
flows as well as many options built-in the protocol, designed to support different usage. But in
a nutshell we want to enable the passbolt server to act as a relying party.

Reference:
e https://developer.okta.com/bloa/2017/07/25/oidc-primer-part-1

e https://auth0.com/docs/videos/learn-identity-series/introduction-to-identity

PUBLIC CC BY-SA 26/26


https://developer.okta.com/blog/2017/07/25/oidc-primer-part-1
https://auth0.com/docs/videos/learn-identity-series/introduction-to-identity

	Passbolt Security v3 
	 
	Introduction 
	Business goals 
	Current situation 
	Type of data 
	Keys 
	Data 

	Threat model 
	Residual risks 

	New requirements & assumptions 

	 
	Proposed solutions 
	Remove the need for the user to enter an OpenPGP key passphrase 
	In the browser 
	 
	Additional risks (Browser) 

	On Mobile 
	On Android 
	On IOS 
	Additional risks (Mobile) 


	 
	 
	Enable cross-device secret key transfer using QR Codes 
	Requirements & constraints 
	Selected solution 
	Protocol definition 
	Sequence 
	Possible Transfer Statuses 

	Additional risks 

	 
	Add optional escrow key 
	Additional risks 

	Add support for multiple authentication schemes 
	Supported schemes 
	GpgAuth 
	LDAP authentication 

	 
	OpenID Connect 




