
Guide: Building with AI (as a
Non-Developer)
By Coby Bergman

Like many of Kyle’s readers, I’m a tad obsessed with AI. I run an AI-native GTM consultancy,
and for the past 5 months I’ve been spending ~3-8 hours daily building AI applications - despite
never having programmed before in my life.

It feels a lot like being a kid again playing with lego. Except now, instead of just building the
sets, I get to design them, too.

At the same time, I’ve found there’s often a substantial gap between an impressive looking AI
demo and a solution someone might actually want to use.

This tactical guide contains my hard-won learnings covering the distance from AI prototype to
production-grade AI application - the prompting techniques that actually worked, the context
engineering principles that prevented failure, and the deployment gotchas that at times had me
wanting to tear my hair out.

No theory. Nothing I don’t personally use day in and day out myself.

*Examples in this guide are pulled from my recent experience building a production-grade, Star
Wars-inspired generative text adventure game called “Echoes of Rebellion”.

You can follow along with my up-to-date experiments and content here:

●​ Linkedin
●​ X (Twitter)
●​ Website - Leadership in Practice

Table of Contents
The Prompt is the Product
Effective Prompting Techniques

General-Use Prompting Techniques
Consideration When Designing the Application Master Prompt

Context Engineering
The "Builder" Perspective: Managing My Workflow
The "Application" Perspective: Designing the AI Engine

The Deployment Gauntlet
Understanding the Break Points
Solutioning

https://www.linkedin.com/in/cobybergman/
https://x.com/CobyBergman
https://www.leadershipinpractice.ca/

Proactive Solutions
Reactive Solutions

LLM Tool Stack: Evaluation

The Prompt is the Product
Unlike traditional software development, with AI-native applications the core application engine -
its logic, personality, and constraints - is often dictated by the Master Prompt. The code is often
just a scaffold to service the prompt.

To a significant extent, the Master Prompt is the software.

I’ve consistently found that my biggest challenges building AI-Native applications are not typical
bugs, but figuring out how to craft the Master Prompt in a way that solves for three things:

1.​ Quality: Can the application deliver the expected quality of experience under ideal
conditions?

2.​ Consistency: How consistently does it deliver that quality of experience under regular
conditions?

3.​ Anti-fragility: How does it maintain that quality of experience in real-world, unexpected,
or "red-teamed" conditions?

To put this into perspective, I probably spent around 36 hours building the Echoes of Rebellion
game, and 24 hours of those hours were spent dialing in the Master Prompt with these three
goals in mind.

Effective Prompting Techniques
My general approach was to treat the AI (primarily Gemini 2.5 Pro) as a strategic thought
partner, not just an order-taker.

General-Use Prompting Techniques

●​ Meta-Prompting (Prompting for Prompts): To create the best possible Master Prompt,
my first step was to have the AI help me design it.

○​ Prompt: "Help me craft a prompt that I could feed to another LLM to generate the
highest quality PRD and dev plan for a delightful and compelling application."

●​ Meta-Meta Prompting (Guidance for Generating Meta-Prompts): To help the LLM
generate maximally effective prompts and meta-prompts, I fed it prompting guides.

○​ Prompt: “I've attached three prompting guides. Please identify the relevant
frameworks that might level up the quality of our prompt and overall project, and
make sure to incorporate them into your responses as we go forward.”

●​ Handholding: I frequently ask the LLM to guide me through the steps to complete the
project. Find this is especially useful when doing something for the first time.

○​ Prompt: “I have zero experience with doing work like this. Going forward, guide
me through everything step-by-step, detail-by-detail, click by click. Leave no
stone unturned, and assume zero upfront knowledge.”

●​ Giving the LLM an Offramp: LLMs often seek to please, and won’t always admit
(reactively, much less proactively) when they’ve made a mistake. At the risk of
anthropomorphizing, providing an upfront offramp makes it easier for LLM’s to admit or
sidestep mistakes by helping them save face.

○​ Prompt: “Please give me your confidence level in your analysis. Also, my priority
here is accuracy and quality over completeness. If you’re not sure about
anything, I’d rather you leave it blank than take a guess and risk making
something up. If you leave anything blank, just let me know.”

●​ The "Thought-Partner" Approach: Rather than giving the LLM orders, I ended just
about every prompt with an invitation for it to share it’s “candid thoughts”, “creative
guidance”, or “candid feedback”.

○​ Prompt: “I’d be grateful for your candid feedback and guidance here. I’m not
married to the current approach.”

●​ Forcing "Self-Critique": A particularly high-value prompt was asking the LLM to
role-play an expert and critique itself.

○​ Prompt: “Play the role of an expert [PM/developer/designer] and conduct a
comprehensive, candid, no-holds-barred analysis of what we've completed.
What's good? What needs improvement? What risks should we consider?"

●​ Using "What Good Looks Like" (WGLL) Examples:
○​ My Experience: With only 1-2 examples, the LLM tended to just recreate those

same situations. With too many, the quality could become diluted.
○​ My Solution: I used a small handful of high-quality examples (a minimum of 3,

max of 7) and was explicit that they were for inspiration, encouraging the LLM to
use its creativity to generate novel situations or reuse elements in new ways.

Consideration When Designing the Application Master Prompt

Balancing ‘Adaptive’ vs ‘Strict’ Master Prompt Mechanics: Found there was a delicate
balance between using strict rules and adaptive principles when crafting the Master Prompt.

How I think about this:

●​ Adaptive Principles:
○​ Gives the LLM more creative control on how to handle various situations
○​ Relies on LLM judgement to deliver a great UX

●​ Strict Rules:
○​ Kind of like hard-coding rules for how the AI will handle certain situations (but not

actually, because the prompt is still a generative, statistical system; really we’re
just dramatically influencing the probabilities)

○​ Relies on human judgement to accurately predict the nature of the scenarios the
LLM will experience

●​ UX Tradeoff:
○​ Adaptive principles introduce more unknown risks to the system, will delivering a

more natural UX (as long as the LLM’s judgement is on point)
○​ Strict rules introduce more known risks to the system, while reducing the range of

unknown risks. The known risk is that the LLM will take a one-size-fits all (aka
when you have a hammer, everything is a nail) approach to specific
predetermined situations.

●​ Example: When I gave the LLM full adaptive control over the game’s narrative pacing, it
introduced an occasional but critical bug where the narrative would occasionally get
stuck in a loop (among other occasional issues). To fix this, I set a strict rule that the LLM
must find a way to progress the game’s narrative in a substantive way within 2-3 ‘turns’
max. This solved the narrative loop bug and reduced the range of unknown risks, but
introduced a new known risk: the LLM would sometimes generate deux ex machina style
events that felt forced, and detracted from the ‘grounded’ gaming experience I was going
for.

Context Engineering
I find it helpful to think of LLM context like working memory. For example, info in my working
memory is quicker to recall, and details are easier to recall. At the same time, try to hold too
much in my working memory and the quality and reliability of recall degrades. LLMs work
similarly.

This is why context engineering has been crucial for getting to quality outcomes, both during my
AI-assisted build process and when designing the Master Prompt for production-grade
applications.

The core challenge is always the same: providing enough context for consistent, high-quality,
and anti-fragile outputs without bloating the prompt, which can lead to a loss of LLM focus,
longer load times, and higher API costs.

The "Builder" Perspective: Managing My Workflow

●​ The Inevitable Context Problems: On any non-trivial project, I found I would inevitably
run into one of three issues: the context window getting too long and confusing the AI
(even with a 1M token window, I saw issues around the 150-200k token threshold),
hitting token limits, or hitting rate limits on a frontier model.

●​ My Suite of Solutions: To manage these issues, I developed a few go-to tactics:
○​ Editing an earlier prompt to reduce token count. I thought of this like loading

a previous save state in a video game. Some AI applications are now introducing
branching for this, where the old thread is saved while a new, pruned branch is
created.

○​ Starting a new chat thread. This is a "new game" approach—a blank slate
where the LLM forgets everything. (Note: I found that even with features like
ChatGPT's memory, it only retains snippets and doesn't solve the core problem
of losing full thread context).

○​ Waiting for rate limits to refresh or falling back to a lower-capability model.
My takeaway here was that it was usually better to wait for the best frontier model
than to switch to a lower-tier one and fight to get B-level outputs up to an A-level
standard.

●​ The Go-To Workflow: The "Context Transfer": Since starting new threads became a
regular part of my process, my core challenge was transferring all the relevant context
without the cruft. My most effective technique for this was meta-prompting.

○​ My "Context Transfer" Meta-Prompt: "Generate a prompt for a new LLM to be
able to pick up from where we left off. Include all the relevant insight and context
and design principles necessary for it to do an exceptional job without me having
to provide it any additional information. Make sure to include an updated PRD
and dev plan based on everything we’ve learned, as well as a detailed review of
all the potential pitfalls and key success factors we’ve discovered, but don’t limit
your response to that. Be extremely thorough and detailed in thinking through the
context the other LLM might need, and in crafting the prompt itself."

○​ Critical Documentation: I also attach any other documentation to the new
thread that I feel is important for the LLM to understand in full

The "Application" Perspective: Designing the AI Engine

●​ Higher Stakes: All the "Builder" considerations apply here, but the stakes are higher for
the application's AI engine. Poor context engineering directly leads to hard costs (APIs)
and a degraded user experience. This means building Context Engineering Principles
directly into my PRD from day one.

●​ A Case Study in Trade-offs (from Echoes of Rebellion): I faced a series of context
engineering trade-offs when designing the application.

○​ Application State Tradeoff:
■​ I used temporary browser storage for the application state. That said, any

browser refresh (due to a bug, a lost connection, etc.) would wipe the
user's progress.

■​ I ended up engineering a "save" capability that could restore state from
the minimum viable context.

○​ Game Length Tradeoff:
■​ My initial vision was an epic, endless generative gaming adventure, but

this was bloating the context window and impacting narrative quality in
later stages of the game.

■​ I ended up capping game length to avoid context-related issues.
○​ Detail / Relevance Tradeoff:

■​ The more detail I gave the LLM about the game ‘universe’, the greater it’s
ability to generate a richly detailed and emotionally resonant narrative
experience

■​ At the same time, too much context introduced focus/consistency risks,
and lengthened load times (if I was using API calls that had fees, it might
have contributed to operating costs as well).

■​ Finding a healthy balance that met my bar for quality, consistency, and
antifragility involved a lot of iterating and QA testing

The Deployment Gauntlet
The transition from my local machine to a live production environment was where I encountered
the most difficult technical issues. While I solved countless bugs throughout the Echoes of
Rebellion build process, 80% of my time spent resolving technical issues was dedicated to 6-8
deployment issues that the LLM I was working with struggled to resolve. In total, I spent ~6-8hrs
on these items, or ~1hr/issue.

Understanding the Break Points

●​ Anticipating the Production Break: I found that code working perfectly locally didn’t
always work ‘as is’ in production. The hosting environment is different.

●​ Common Points of Failure I Encountered:
○​ Environment Configuration: Setting up Docker files, YAML files, and getting

GitHub CI/CD working.
○​ API Keys & Dependencies: Improper handling of keys and dependency version

mismatches were frequent culprits for failed deployments.
○​ LLM Hallucinations: I experienced Google AI Studio Build lying about its

capabilities (e.g., "I've generated the Docker file," when it couldn’t) while Gemini
2.5 Pro made a variety of unsanctioned and unacknowledged changes to my
planning documents.

Solutioning

Proactive Solutions

●​ Building with Foresight: To proactively mitigate production issues, I now include
context regarding the future production environment in my PRD + dev plan. If I don’t
know the exact stack I’ll be using upfront, I share examples of the types of tools and
hosting environments that I’m considering (e.g. Google Cloud Run, Google Analytics,
etc.)

●​ Meta meta prompting: I also now include a list of common production issues in my
‘Pre-flight Checklist’ meta meta prompt when crafting my initial PRD and dev plan.

https://docs.google.com/document/d/1nvAkmUkcORUYaSaGiSuBPby0N6cnFTgKaIEkRiDpeKw/edit?usp=sharing

Reactive Solutions

●​ Troubleshooting: When troubleshooting production issues, my process now involves
asking the LLM to consider the specific tools I’m using (and their unique configuration
requirements) in my production environment as a potential cause.

●​ Rules for Stuck LLMs: I found my issue-resolution time was highly correlated with how
quickly I was able to spot an LLM spinning its wheels.

○​ I learned to immediately switch to a different (frontier) model any time I spotted
the following situations:

○​ The ‘8 Ball’: If an LLM tried the same failed solution more than once I
immediately switched to a different model.

○​ The "3-Strikes" Rule: When the LLM failed to solve a bug within three attempts,
I would pause and immediately switch to a different LLM.

○​ Typically the new LLM, with its ‘fresh set of eyes’, was able to resolve the issue in
minutes.

https://claude.ai/public/artifacts/62a8b8a4-c4ab-4c00-9602-3cde61703f6d

Click here to visit the Claude Artifact.

https://claude.ai/public/artifacts/62a8b8a4-c4ab-4c00-9602-3cde61703f6d

	Guide: Building with AI (as a Non-Developer)
	Table of Contents
	The Prompt is the Product
	Effective Prompting Techniques
	General-Use Prompting Techniques
	Consideration When Designing the Application Master Prompt

	Context Engineering
	The "Builder" Perspective: Managing My Workflow
	The "Application" Perspective: Designing the AI Engine

	The Deployment Gauntlet
	Understanding the Break Points
	Solutioning
	Proactive Solutions
	Reactive Solutions

	

