| | Course | Digital Integrated Circuit Design | | Course ID | ICE4006 | | | |---------------------------------|---|---|--------------------------------|---------------|---------|--|--| | | Title | | | (Course Type) | | | | | Course
Information | (Cred | lit/ hours per week) | | | | | | | Instructor | Prof. Haı | nho Lee | | | | | | | | | | | | | | | | | | Course Ol | Relation with Program Outcomes | | | | | | Course
Learning
Objective | $1 \begin{array}{ c c } \hline & 1 & \begin{array}{ c c } \hline & & & \\ & & & \end{array}$ | Ability to solve information problems science, and engine | PO 1 | | | | | | | 2 | Ability to analyze info
engineering data and
hypotheses through exp | | PO 2 | | | | | | 3 | Ability to define and communication engineer | PO 3 | | | | | | | 5 | PO 5 | | | | | | | Course
Description | As applied to digital integrated circuits, the CMOS transistor is studied in depth - from its fabrication to its electrical characteristics. Combinational, sequential, and dynamic logic circuits are considered. SPICE is used as both an analysis and design tools. Semiconductor memory circuits are also discussed. CAD Tools for circuit design, layout, extraction, and simulation will be used for Labs and projects. The emphasis of this class is hands-on transistor level circuit and chip layout design. During the first six weeks, you will complete a series of labs for circuit design, simulation, chip layout and performance analysis. Along the way, you will master a variety of CAD tools and design techniques. Based on this experience, you will carry out a final design project. | | | | | | | | | NO | | | Details | | | | | Course
Outcomes | Learn basic theory and design methods for designing digital logic circuits such as Inverter, NAND, NOR, AND, OR gate as CMOS transistors, and cultivate design capabilities and performance analysis methods for designing addition, subtraction, and multiplier as CMOS transistors through design experiments and projects Development of the ability to design logic circuits, adders, subtractors, multipliers, and memories of digital systems using the latest information on digital integrated circuit design | | | | | | | | | using transistors, existing research results, and design CAD tools In consideration of performance limitations such as area, clock speed, power consumption, etc., the analysis capability is cultivated by designing and simulating digital integrated circuits using Hspice, and the layout design capability using the magic layout CAD tool | | | | | | | | (Prerequisites) | | | | | | | | | (Recommended | | | | | | | | | |--------------------------|---|------------|-----------------|----------|---------------------|-------|--------------|------| | Courses after | | | | | | | | | | This Course) | | | | | | | | | | Course | | | | | | | | | | Software | | | | | | | | | | or Tool | | | | | | | | | | | Titl | e | Au | thors | Publisher | Place | Year | ISBN | | Textbook | Integrated Cir | ign Neil H | E. Weste | | | 2011 | 978032169694 | | | | Integrated Circuit Design | | igii Neii ii. | L. WESTE | | | 2011 | 6 | | | | | | | | | | | | references | Lecture type | Lecture | | | | | | | | | (Notes) | | | | | | | | | | (Evaluation
Criteria) | (Attendance) | 5% | (Quiz) | 0% | (Lab
Assignment) | 5% | (Etc.) | 10% | | | Ι _ \ ΙΔΩ% Ι΄ | | (Final
Exam) | 40% | (Total) | | 100 % | | | (Methods of Evaluation) | Assessment will be made on the basis of written examination and assignment. | | | | | | | | | Weekly Topical Outline of Course | | | | | |----------------------------------|------------|--|--|--| | (1st
Week) | Topic | Introduction | | | | | Contents | VLSI, digital Integrated circuit technology history, chip design methodology | | | | | Assignment | | | | | | Topic | Fabrication of MOS circuits, Manufacturing Process. | | | | (2nd
Week) | Contents | CMOS Processing Technology, Semiconductor processing step, processing and design layout matching | | | | | Assignment | | | | | | Topic | RISC Microprocessor example | | | | (3rd
Week) | Contents | RISC Microprocessor example | | | | | Assignment | | | | | (4th
Week) | Topic | MOS Transistor Theory and Models for Resistance and Capacitance calculation | | | | | Contents | MOS Transistor Theory and Models for Resistance and Capacitance calculation | | | | | Assignment | | | | | | Topic | CMOS inverter, Logical Effort | | | (5th | Week) | Contents | MOS Inverter operation/Design/Layout/Capacitance characteristics ,
Logical Effort | |---------------|------------|--| | | Assignment | | | (6th
Week) | Topic | Combinational circuits and CMOS logic families | | | Contents | Static CMOS design: Complementary CMOS logic, pass-transistor logic NAND, NOR, EXOR gate design with CMOS, Transistor sizing Power consumption in CMOS gates | | | Assignment | | | (7th
Week) | Topic | Midterm Exam | | | Contents | | | | Assignment | | | (8th
Week) | Topic | Combinational circuits and CMOS logic families | | | Contents | Dynamic CMOS logic | | | Assignment | | | | Topic | Sequential circuits and layout | |----------------|------------|--| | (9th
Week) | Contents | D-FF circuit with CMOS, Timing consideration for D-FF design, clocked latch, Single phase clocked D-FF | | | Assignment | | | | Topic | Design methodology and tools | | (10th
Week) | Contents | Design methodology and tools | | | Assignment | | | | Topic | Datapath subsystems | | (11th
Week) | Contents | | | | Assignment | | | | Topic | Timing Issues in Digital Circuits | | (12th
Week) | Contents | | | | Assignment | | | (13th
Week) | Topic | Design Arithmetic Building Blocks | | | Contents | Arithmetic Building block deisgn | |----------------|------------|---| | | Assignment | | | | Торіс | Designing Memory and Array Structures | | (14th
Week) | Contents | DRAM, SRAM circuit, Memory Cell, Peripheral Circuit | | | Assignment | | | | Topic | Final examination | | (15th
Week) | Contents | | | | Assignment | | | (16th
Week) | Topic | | | | Contents | | | | Assignment | |