

PLAN DE RECUPERACIÓN SEGUNDO TRIMESTRE ÁREA DE TECNOLOGÍA

Taller de Recuperación Segundo Trimestre – Grado Octavo

Competencias a Trabajar

- 1. Desarrollar habilidades de pensamiento lógico y razonamiento.
- 2. Solucionar problemas a través de diagramas de flujo y la programación en bloques.

Recursos: Papel y lápiz, PSeInt (PsDraw), MakeCode (programación en bloques).

Actividad 1: Simulación de cajero

Objetivo: Comprender el uso de variables, operaciones matemáticas y estructuras condicionales a través de un ejercicio cotidiano.

Propósito: Practicar cómo se almacenan datos en variables, cómo se usan operaciones matemáticas y cómo aplicar condicionales a una situación real.

Situación:

Eres un cajero en una tienda de tu ciudad. Cada cliente puede comprar hasta **3 productos**. Como cajero debes realizar las siguientes acciones:

- Pedir el nombre del cliente (usar variable: cliente).
- Registrar el precio de cada producto (usar variables: p1, p2, p3).
- Calcular el total de la compra (usar variable: total).
- Si el total es mayor a \$40.000, Entonces aplicar un descuento del 5%.
- Entregar el valor final a pagar (usar variable: pagoFinal).

¿Cómo debes hacerlo?

- Utilizar una hoja de bloc o el cuaderno
- Construir una tabla para simular el registro de las compras, cada encabezado será el nombre de las variables necesarias:

Ejemplo:

cliente	P1	P2	P3	Total	Descuento	pagoFinal
mauren	4000	7000	35000	46000	5	43700

PLAN DE RECUPERACIÓN SEGUNDO TRIMESTRE ÁREA DE TECNOLOGÍA

- Completar la tabla con 5 clientes inventados
- Realiza el diagrama de flujo que muestre el paso a paso del proceso que realizas como cajero al atender un cliente de acuerdo a las acciones:

Inicio \rightarrow pedir nombre \rightarrow registrar precios \rightarrow calcular total \rightarrow aplicar o no descuento \rightarrow mostrar pago final \rightarrow fin.

Evidencia que debes entregar: Hoja en bloc o cuaderno con la actividad desarrollada.

Actividad 2: Diagramas de Flujo

Objetivo: Representar un problema con uso de variables y contadores.

Propósito: Afianzar el uso de ciclos, variables y contadores usando diagramas de flujo.

Situación: Te contratan en una empresa que crea Apps para celular, como eres nuevo y estas chiquito te piden que ayudes con tareas sencillas para que no te traumes. El equipo te pide que hagas los diagramas de flujo para entender el paso a paso que debe hacer cada aplicación según la función para la que va a ser creada.

El jefe del equipo te da las indicaciones para cada diagrama de la siguiente manera:

Entradas: Datos o información que ingresa el cliente que usa la app, esta información se debe guardar en **variables** ya que no siempre será la misma en todos los casos

Procesos: Son las acciones o las operaciones matemáticas que se realizan usando los datos que se piden en las **entradas**.

Condiciones: Son las expresiones matemáticas que se usan para comparar datos o variables y dependiendo si son verdaderas o falsas se realizan procesos diferentes: ejemplo: nota(variable) > 3.5

Salida: Es el resultado que se espera mostrar después de realizar los procesos y condiciones con la información de entrada.

Los diagramas deben ser realizados en PSeInt.

PLAN DE RECUPERACIÓN SEGUNDO TRIMESTRE ÁREA DE TECNOLOGÍA

Primera App: Diseña un diagrama de flujo que permita a un profesor **contar** cuántos estudiantes aprobaron y reprobaron una evaluación.

Indicaciones:

- Entradas: nombre del estudiante, nota en la evaluación
- Proceso: crear una variable que vaya guardando la cuenta de aprobados y otra variable que vaya guardando la cuenta de reprobados
- Condición: si la nota es mayor o igual (≥) a 3.5 la variable que lleva la cuenta de los aprobados aumenta en uno; si no la variable que lleva la cuenta de los reprobados aumenta en uno.
- **Salida:** Mostrar la cantidad de estudiantes que aprobaron y la cantidad de estudiantes que reprobaron.

Segunda App: Diseña un diagrama de flujo que permita que se lleve un control del tiempo en Instagram.

Indicaciones:

- Entradas: Horas de uso de insta en un día
- Condición:
 - -Si horas de uso < 2 →entonces mostrar mensaje 'Uso bajo, ¡muy bien!'.
 - -Si horas de uso entre 2 y 4 →entonces mostrar mensaje 'Uso moderado, sigue así'.
 - -Si horas de uso > 4 →entonces mostrar mensaje 'Uso excesivo, debes reducir el tiempo'.
- Salida: Mostrar el mensaje de acuerdo a la cantidad de horas de uso de Instagram.

Tercera App: Diseñar un diagrama de flujo para mostrar el resultado en partidos de fútbol.

Indicaciones:

- Entradas: Goles del equipo A, Goles del equipo B
- Condición:
 - **Si** los goles del equipo A > a los goles del equipo B →**entonces** mostrar "Ganó el equipo A".
 - -Si los goles del equipo A > a los goles del equipo B → entonces mostrar "Ganó el equipo B".

PLAN DE RECUPERACIÓN SEGUNDO TRIMESTRE ÁREA DE TECNOLOGÍA

-Si los goles del equipo A = a los goles del equipo B \rightarrow **entonces** mostrar "Empate".

• Salida: Mostrar un mensaje que indique cual fue el resultado del partido

Evidencia que debes entregar: Guardar cada diagrama de flujo creado como imagen y subirlos como evidencia en el formulario indicado en el Blog

Actividad 3: Programación en bloques

Objetivo: Aplicar condicionales y variables en un entorno visual.

Propósito: Comprender cómo los condicionales permiten modificar el comportamiento de un sistema según una variable.

Situación: La misma empresa que te contrato se dio cuenta que te estabas ganando el sueldo muy fácil haciendo solo diagramas, entonces decidieron que ayudarías a crear los bloques de un nuevo sistema que controla los semáforos de la ciudad según la hora de la ciudad.

¿Cómo debe funcionar?

Usando los botones A y B se controla la hora desde 1 hasta 24 representando un día y noche completos. Si la hora seleccionada está en el día (hora 6 hasta hora 18) el semáforo empieza a mostrar la representación de la secuencia

ROJO -> AMARILLO -> VERDE -> AMARILLO -> ROJO

En cambio si la hora seleccionada esta en la noche (desde la hora 19 hasta la hora 5) el semáforo empieza a mostrar la representación de la secuencia AMARILLO->apagado-> AMARILLO->apagado

Indicaciones para programar:

- Variable principal: hora (guarda números entre 0 y 23 representando las 24 horas de un día).
- Condición principal: Para siempre

PLAN DE RECUPERACIÓN SEGUNDO TRIMESTRE ÁREA DE TECNOLOGÍA

En el Día: Si la hora es igual o mayor a las 6 y es igual o menor a las 18 → entonces el semáforo funciona normal: ROJO → AMARILLO → VERDE (con tiempos de 2 segundos de pausa entre cada color).

En la Noche: Si la hora es igual o mayor las 19 y es igual o menor a las 5 → entonces el semáforo parpadea en AMARILLO cada 2 segundos.

- Cambio de la hora:
 - Al iniciar fijar la hora en 12 (medio día)
 - Al Presionar Botón A la hora aumenta en uno
 - Al presionar Botón B la hora retrocede en uno
- Representación de las luces del semáforo: La placa Microbit no tiene colores entonces una opción sugerida es representar cada color (rojo, amarillo, verde) con líneas de leds, por ejemplo:

ROJO: mostrar línea de leds de la parte de arriba

AMARILLO: mostrar línea de leds de la parde media

VERDE: mostrar línea de leds de la parte de abajo

Evidencia que debes entregar: Enviar el enlace del proyecto en el formulario de la actividad

Rúbrica de Evaluación de la actividad

Criterio	5 -	4 -	3 -	2 -	1-
Comprensión de conceptos (variables, contadores, condicionales)	Domina los conceptos y los aplica correctamente en todos los ejercicios.	Demuestra buena comprensión con mínimos errores conceptuales.	Comprende parcialmente los conceptos; errores frecuentes, pero logra resolver.	Tiene dificultades notorias para aplicar los conceptos, con múltiples errores.	No comprende ni aplica los conceptos trabajados.

PLAN DE RECUPERACIÓN SEGUNDO TRIMESTRE ÁREA DE TECNOLOGÍA

Diseño de diagramas de flujo (PSeInt)	Diagramas claros, ordenados, lógicos y bien estructurados; aplica condicionales correctamente.	Diagramas comprensible s y ordenados; pocos errores de lógica o estructura.	Diagramas con errores de lógica o secuencia, aunque son entendibles.	Diagramas poco claros, con errores graves de estructura y lógica.	No presenta diagramas destos son incorrectos.
Programación en bloques (MakeCode)	Programa completo y funcional, resuelve el problema propuesto de manera óptima.	Programa funcional con ligeros errores o soluciones parcialmente optimizadas.	Programa resuelve el problema, aunque presenta varios errores de lógica.	Programa incompleto o con fallas que impiden el funcionamiento esperado.	No presenta programa o este no funciona.
Creatividad y contextualizació n	Integra los conceptos en soluciones originales y adaptadas a situaciones del entorno.	Soluciones correctas con algunos elementos de creatividad.	Soluciones básicas con escasa contextualización	Escasa adaptación al contexto, sin elementos creativos.	No aplica creatividad contextualiz
Autonomía y actitud frente al trabajo	Trabaja de forma autónoma, demuestra interés y responsabilida d en todas las actividades.	Trabaja de manera autónoma la mayor parte del tiempo; cumple con lo propuesto.	Requiere acompañamiento frecuente; cumple parcialmente con las actividades.	Depende constantement e de la guía del docente; poco interés en las actividades.	No demuestra interés ni compromiso con las actividades.