@ _Home_|

Java Interview Q&A - 4

01. What are the differences between ‘HashMap’ and ‘TreeMap’ ?
HashMap:
e It may have one null key and multiple null values.
e It maintains no order.
TreeMap:
e It cannot have a null key but can have multiple null values.
e It maintains ascending order.

/ MapExample

02.Can you explain the difference between ‘equals’ and ‘=="?
Q&A 01 - 39
7 EqualsMethod vs EqualSymbol

03.What are design patterns? Can you name and describe a few common
ones used in Java?
Design Patterns: Elegant solution to repeating problems in software
design.
(Software »cce @D »EPD &5 OEPE DEO DD DIgd)

ex: Singleton, Factory, Facade, Decorator, Observer, Strategy

B AD 2
%’ TheMIU/Design-Patterns-Impl

04.Can you describe the different types of inner classes in Java?
e Static Nested Class: Associated with the outer class but
instantiated independently.
e Non-static Nested Class (Inner Class): Associated with an
instance of the outer class.
e Local Inner Class: Defined inside a block or method.

https://docs.google.com/document/d/1mMQwytSe2YWJ0kk0hmrHyeVWZLPcvPPTUwxYu1TDU6Q/edit#heading=h.zf18ypew9r9b
https://themiu.github.io/Notes/
https://github.com/TheMIU/Java/blob/main/src/collection_framework/MapExample.java
https://github.com/TheMIU/Java/blob/main/src/EqualsMethod_vs_EqualSymbol.java
https://github.com/TheMIU/Design-Patterns-Impl

e Anonymous Inner Class: A class without a name, often used for
instantiating interfaces or abstract classes.

%’ inner class

05.Can you explain Java's garbage collection process?
JVM a6l Huees garbage collector ©med unreferenced objects mgowen,
heap memory vwed 0od wIa.

%’ GarbageCollectorExample

06.What is Java 8's Stream API and how is it different from a collection?
Stream API: Introduced functional-style operations on streams of
elements.

Difference from Collection:
Stream doesn't store elements; it processes elements on-the-fly,

supporting functional-style operations like map, filter, and reduce.

4’ stream api

07. What is the diamond problem in inheritance and how does Java solve it?
Java doesn't support multiple inheritance for classes.

(class ©=% multiple interfaces o5 implement ©35» geod.)

08.How does Java handle multiple inheritance?
Achieved through interfaces, allowing a class to implement multiple
interfaces.
(class ©=% multiple interfaces o¢» implement 935> geo5.)

%’ DiamondProblem

09.Can you describe the Observer design pattern and its usage in Java?
Object g9 Dwem one-to-many dependency o geonés 93G.
Subject object ©w6: Deninebh 996:NT), IS} ©hm dependency Huen
g% observer objects 0co® & Denéwe notify Dec) automatically update
DG,

https://github.com/TheMIU/Java/tree/main/src/inner_class
https://github.com/TheMIU/Java/blob/main/src/garbage_collector/GarbageCollectorExample.java
https://github.com/TheMIU/Java/tree/main/src/stream_api
https://github.com/TheMIU/Java/blob/main/src/oop/inheritance/DiamondProblem.java

distributed systems, event handling systems, GUI components o¢ use

ol

%’ ObserverTest

10. What are the differences between a HashSet, TreeSet, and

11.

12.

LinkedHashSet?
HashSet
e Uses HashMap to store objects.
e It doesn’t maintain order.
LinkedHashSet
e Uses LinkedHashMap to store objects.
e It maintains order.
TreeSet
e Uses TreeMap to store objects.
e It maintains order (Sorted to ascending by default)

B Collection Framework

How does JIT compilation work in Java?
Runtime a@@-::fé, Java bytecode ©», machine code ©»o convert mdc.

Can you describe the Builder pattern and its implementation in Java?
Pattern: Creational pattern used to construct a complex object step by
step.

Implementation: Involves a builder class with methods to set properties
and a director class to manage the construction process.

https://docs.google.com/document/d/1vcvI0DAtFxIvAvgrvcnfcOtB7z3ScufNYAUl6sm2ySQ/edit
https://github.com/TheMIU/Design-Patterns-Impl/blob/main/src/O3_behavioral_design_patterns/observer/ObserverTest.java

UML diagram of Builder Design

pattern
!
Director - ConcreateBuilder
~ Builder p
Builder - builder [~ J
= : T buildpart()
Construct() buildpart() getResuli() - Product
L 9 '
; 1=<create=>
1
Y
Product

% BuilderPatternExample

13. Can you describe the Factory Method design pattern and its
implementation in Java?
Object creation logic & hide ©3a.

Key Components
1. Products (Product interface & Concrete products)
2. Factory (Factory interface & Concrete factory)

Implementation:
4/ FactoryTest

14.What are the principles of SOLID in object-oriented programming?

https://github.com/TheMIU/Design-Patterns-Impl/blob/main/src/O1_creational_design_patterns/builder/BuilderPatternExample.java
https://github.com/TheMIU/Design-Patterns-Impl/blob/main/src/O1_creational_design_patterns/factory/FactoryTest.java

S ingle Resposibility Principle

! A class should have only a single responsibility
(i.e. only one potential change in the software's
specification should be able to affect the specifi-
cation of the class)

A software module (it can be a class or method)
should be open for extension but closed for
modification.

L iskov Substitution Principle

Objects in a program should be replaceable with
instances of their subtypes without altering the
correctness of that program.

e I nterface Segregation Principle

’?\ Clients should not be forced to depend upon the
interfaces that they do not use.

Program to an interface, not to an implementa-
tion.

Rules »e06:,, best practices.

1. Single Responsibility Principle (SRP)
o class 990 Duedn geod oo responsibility ood.

2. Open/Closed Principle (OCP)
Class sob, c6: 18658 extend ©dH» geod Debn ®X. Modify ods
0D gg DD .

3. Liskov Substitution Principle (LSP)

15.

16.

17.

18.

®®® subclass o, parent class object ©o&% replace osbo g
Debn ®), functionality break Debhme o 0.

4. Interface Segregation Principle (ISP)
interface o use ©35 e, 362 »@ function vo5e© override
2SHD Hae force »6:IWEBID B.

5. Dependency Inversion Principle (DIP)
Code ©»%, high level module, low level module ©%» dependency
Oobh Huehs o Pum On. (depend Demro B interface cod Sbw)

© SOLID Principles wp @6:058)&? - SOLID Principles in Sinhala
4 SOLID principles

What is meant by loose coupling in programming and how does Java
promote it?

Meaning:

Reducing dependencies between components or modules.

Java Promotion:
Dependency Injection, Interface orientation through Loose coupling
promote »Jd.

B Spring

How do you handle transaction management in Java?
Relational DB ©¢e¢, JDBC o¢ java.sgl.Connection interface ©vwmeb.
Spring @ce @Transactional annotation ©web.

How can you use Java to read and write files?
Reading: Use FileReader, BufferedReader, Scanner, or Files class.
Writing: Use FileWriter, BufferedWriter, PrintWriter, or Files class.

What is meant by thread safety and how is it ensured in Java?
Meaning: Ensuring that shared resources can be accessed concurrently
without causing data corruption.

https://www.youtube.com/watch?v=x2y_lsIdC6c&list=WL&index=1
https://docs.google.com/document/d/1EiE1xjPk07dRjhrkPdGXUhfBlSqQKIVkN5znKbIxq7E/edit#heading=h.2jb40mqtof5
https://github.com/TheMIU/Java/blob/main/src/SOLID_principles.java

Java Methods: Synchronization using the synchronized keyword, or using
thread-safe classes from java.util.concurrent package.

4’ SynchronizationExample

19. What is the difference between a Java library and a Java framework?
Library: A collection of pre-written code that can be used in various
projects.

(ex: JDBC, Lombok, Jackson, JUnit)

Framework: An integrated set of software tools and components
providing a foundation for building applications.
(ex: Spring, Spring Boot, Hibernate)

20.What are some popular libraries in Java for handling JSON?
Jackson: Provides JSON parsing and generation.
Gson: Google’'s library for JSON parsing.

% B Spring

21. How does the Java Memory Model work?
The Java Memory Model (JMM) defines the allowable behavior of
multithreaded programs, and therefore describes when such reorderings
are possible. It places execution-time constraints on the relationship
between threads and main memory in order to achieve consistent and
reliable Java applications.

Definition: Describes how threads interact through memory.

Visibility: Guarantees visibility of changes made by one thread to other
threads.

Atomicity: Operations like reading and writing are atomic for reference
variables.

O Java Memory Model in 10 minutes

22. How can we ensure that a class is immutable in Java?

https://docs.google.com/document/d/1EiE1xjPk07dRjhrkPdGXUhfBlSqQKIVkN5znKbIxq7E/edit#heading=h.7ipo59x5gpwa
https://www.youtube.com/watch?v=Z4hMFBvCDV4
https://github.com/TheMIU/Java/blob/main/src/threads/SynchronizationExample.java

Rules: Declare class as final, make fields private and final, avoid mutator
methods, and ensure deep immutability for mutable fields.

%/ ImmutableClass

23. Can you explain what is function currying in Java?
Definition: Transforming a function that takes multiple arguments into a
sequence of functions, each taking a single argument.
Example: Using functional interfaces and lambda expressions.

% @16 Using Currying in Java
4 CurryingExample

24.How is string immutability beneficial in Java?
Thread Safety:
In a multi-threaded environment, when different threads access the same
String/StringBuffer object, each thread sees the same value, and none
can alter the original content.
(Immutable - Denés w¢ ©6:INE.)

Caching: Allows caching and optimization of string literals.

25. What are the rules for method overloading and overriding in Java?
Method overloading:
* 90 class v9d GREER
* same name - different parameter count
* same name - different parameter type
* method wed» geod.

% MethodOverloadingExample

Method Overriding:

* Class 2 » extend DeE) Dece,

* Same name - Same Parameter count - Same parameter type
* Method ©edo geod.

(trough inheritance)

26.What are marker interfaces in Java and why are they used?

https://www.youtube.com/watch?v=RkK-c2o0GQA
https://github.com/TheMIU/Java/blob/main/src/immutable_class/ImmutableClass.java
https://github.com/TheMIU/Java/blob/main/src/CurryingExample.java
https://github.com/TheMIU/Java/blob/main/src/MethodOverloadingExample.java

Definition: Interfaces with no methods (e.g., Serializable, Cloneable).

Usage: Indicate a capability or behavior. They serve as a marker for the

compiler or runtime.
(@6:HDW »3 D6 '@ behavior vod Hwen class vod mark 35> use ©3&.)

Q&A 02 -11

27. Can you explain what is ‘ClassCastException’ in Java?
Definition: Thrown when an object is cast to an incompatible type.
Reasons: Attempting to cast an object of a class to a type it is not a
subclass of.

Is Animal {

ic void main(Stringl]

Animal animal = new Animal()

(Dog) animal

28.Can you describe Java's exception hierarchy?

v v

[Exceptions } [Error J

Checked Exceptions
Example : 10 or Compile
time Exception

Virtual Machine Error

h 4

h 4

Unchecked Exceptions
Example : Runtime or Null
Pointer Exception

Assertion Error etc

h
v

Throwable (Root): Error and Exception.

Error (Unchecked): Irrecoverable issues (e.g., OutOfMemoryError).
Exception (Checked/Unchecked): Exceptional conditions requiring
handling (e.g., IOException).

29. What are the differences between ArrayList and LinkedList in Java?
ArrayList: Dynamic array, fast random access, slower for insertions and
deletions.

LinkedList: Doubly linked list, fast insertions and deletions, slower random
access.

30.How can you create a thread-safe singleton in Java?
Two ways to do that,
1. Double-Checked Locking (Lazy Initialization)
2. Bill Pugh Singleton Pattern (Initialization-on-demand holder idiom)

%/ thread safe_singleton

31. What are the different types of thread states in Java?
New: Created but not started.
Runnable: Ready to run, waiting for thread scheduler.
Blocked: Waiting for a monitor lock.

https://github.com/TheMIU/Java/tree/main/src/threads/thread_safe_singleton

Waiting: Waiting indefinitely for another thread to perform a specific
action.

Timed Waiting: Waiting for a specified amount of time.

Terminated: Execution completed.

Q&A 03 - 08

32. How does the Java 8 Date and Time API improve upon the older date and
time classes?
Improvements: Addresses design flaws in older classes (Date and
Calendar).
Immutability: New classes like LocalDate and LocalTime are immutable.
Clarity: Separate classes for date, time, and datetime. Improved API for
manipulation and formatting.

33. How can you use Regular Expressions in Java?
Usage: Pattern matching and manipulation of strings.
Classes: Pattern for compiling regex, Matcher for matching operations.
Methods: matches(), find(), replaceAll(), etc.

/ RegexExample

34.Can you describe the structure and components of a Java class?
Structure: Package declaration, imports, class declaration, fields,
methods, constructors.
Components: Members (fields and methods), constructors, initializers,
nested classes.

35. What is the purpose of a Java package and how is it used? Can you
explain the naming convention associated with it?
Purpose: Group related classes and provide namespace management.
Naming Convention: Lowercase, reverse domain name, followed by
project-specific package names (e.g., com.example.project).

36.Can you explain the life cycle of a Java object?
Creation: Object instantiation.
Usage: Object is actively used.

https://github.com/TheMIU/Java/blob/main/src/RegexExample.java

Abandonment: Object becomes unreachable.
Garbage Collection: Memory is reclaimed by the garbage collector.

%’ ObjectLifeCycleExample

37. What are Java's bitwise and bit shift operators?
Bitwise Operators:
& (AND), | (OR), ~ (XOR), ~ (NOT)

Bit Shift Operators:
<< (left shift), >> (right shift), >>> (unsigned right shift).

38.Can you explain the order of operator precedence and associativity rules
in Java?
Precedence: Higher precedence means an operator is applied first.

Associativity: Describes the order in which operators of the same
precedence are evaluated (left-to-right or right-to-left).

https://github.com/TheMIU/Java/blob/main/src/ObjectLifeCycleExample.java

%/ OperatorPrecedenceExample
%’ Java Operator Precedence - Javatpoint

39. What is a static nested class in Java and how it differs from top-level
class?
Definition: A nested class declared as static within another class.
Difference: Can be instantiated without an instance of the outer class,
while a non-static nested class requires an instance.

StaticNestedClass {
void display() {

System.out.println({”Static nested class method™);

public static wvoid main{5tring[] args)} {

%’ StaticNestedClass

40.Can you explain how the Java 8 foreach() method works?
Q&A 03 - 13

41. What are the differences between the ‘& and '&&' operators in Java?

https://github.com/TheMIU/Java/blob/main/src/OperatorPrecedenceExample.java
https://www.javatpoint.com/java-operator-precedence
https://github.com/TheMIU/Java/blob/main/src/inner_class/StaticNestedClass.java

'&' (Bitwise AND):
e Evaluates both operands, even if the left operand is false.

'&8&' (Conditional AND):
e Uses short-circuit evaluation.

e If the first operand is false, the second operand is not evaluated.
e Good for performance

/ Bitwise vs Conditional AND

42.Can you explain how to use Java's try-with-resources feature?
Usage: Automatic resource management in try-catch blocks.

Syntax:

Benefit:
e Automatically closes resources like files, sockets, etc., after the try
block execution.
e More readable code and easy to write.
e Number of lines of code is reduced.

% TryWithResourcesExample

43.What is the purpose of a constructor in Java?
Purpose: Initializes the object's state when an instance is created.

Constructor characteristics
- Class v96: 59% COD
- Object creation v»: & invoke Do
- Return type vob »®»
- special method ¢o%

https://github.com/TheMIU/Java/blob/main/src/Bitwise_vs_Conditional_AND.java
https://github.com/TheMIU/Java/blob/main/src/TryWithResourcesExample.java

44.How does a PriorityQueue work in Java and where is it used?
Definition: Implements a priority queue based on the natural ordering or
a specified comparator.
Usage: Often used in task scheduling and graph algorithms where
elements with higher priority are processed first.

/ PriorityQueueExample

45.Can you explain the difference between ' public static void main’ and’
public static main ' in Java?
'public static void main": Standard signature for the entry point of a Java
application. The method returns no value (void).

'public static main": Invalid syntax. Return type for the method is missing

Return type for the method is missing

46.How do you create a custom annotation in Java?
Syntax: @interface CustomAnnotation { /* elements */ }
Usage: Apply to classes, methods, fields, etc., using @CustomAnnotation.

%/ custom annotation

47.Can you explain the Liskov Substitution Principle and its importance in
Java programming?
Definition: Subtypes should be substitutable for their base types without
affecting program correctness.

Importance: Enables polymorphism and ensures that inheriting classes
can be used interchangeably with their base classes.

https://github.com/TheMIU/Java/blob/main/src/PriorityQueueExample.java
https://github.com/TheMIU/Java/tree/main/src/custom_annotation

% SOLID principles

48.How does bounded type parameters work in Java Generics?
Usage: Limit the types that can be used as generic arguments.
Syntax: <T extends SomeType> (upper bound) or <T super SomeType>
(lower bound).

% BoundedTypeExample

49.What are the differences between List<Object> and List<?> in Java
Generics?
List<Object> : allows elements of any type, and type information is lost
when retrieving.
List<?> : allows elements of unknown type, and type information is
preserved when retrieving. (cannot add elements except null)

%’ ObjectType vs UnknownType

50.Can you explain the difference between <? super T> and <? extends T>?
<? super T>
e lower-bounded wildcard
e allowing objects of type_ T or its supertypes.

<? extends T>
e upper-bounded wildcard
e allowing objects of type T or its subtypes.

% Upper_Lower_WildcardExample

https://github.com/TheMIU/Java/blob/main/src/SOLID_principles.java
https://github.com/TheMIU/Java/blob/main/src/generics/BoundedTypeExample.java
https://github.com/TheMIU/Java/blob/main/src/generics/ObjectType_vs_UnknownType.java
https://github.com/TheMIU/Java/blob/main/src/generics/Upper_Lower_WildcardExample.java

	🏠_Home_

