
🏠_Home_

Java Interview Q&A - 4

01.​What are the differences between ‘HashMap’ and ‘TreeMap’ ?
HashMap:

●​ It may have one null key and multiple null values.
●​ It maintains no order.

TreeMap:
●​ It cannot have a null key but can have multiple null values.
●​ It maintains ascending order.

🔗 MapExample

02.​Can you explain the difference between ‘equals’ and ‘==’ ?
​ Q&A 01 - 39

🔗 EqualsMethod_vs_EqualSymbol

03.​What are design patterns? Can you name and describe a few common
ones used in Java?
Design Patterns: Elegant solution to repeating problems in software
design.
(Software හදද්දි නැවත නැවත එන ගැටළු වලට තියෙන විසඳුම්)

ex: Singleton, Factory, Facade, Decorator, Observer, Strategy

🔗 AD 2
🔗 TheMIU/Design-Patterns-Impl

04.​Can you describe the different types of inner classes in Java?
●​ Static Nested Class: Associated with the outer class but

instantiated independently.
●​ Non-static Nested Class (Inner Class): Associated with an

instance of the outer class.
●​ Local Inner Class: Defined inside a block or method.

https://docs.google.com/document/d/1mMQwytSe2YWJ0kk0hmrHyeVWZLPcvPPTUwxYu1TDU6Q/edit#heading=h.zf18ypew9r9b
https://themiu.github.io/Notes/
https://github.com/TheMIU/Java/blob/main/src/collection_framework/MapExample.java
https://github.com/TheMIU/Java/blob/main/src/EqualsMethod_vs_EqualSymbol.java
https://github.com/TheMIU/Design-Patterns-Impl

●​ Anonymous Inner Class: A class without a name, often used for
instantiating interfaces or abstract classes.

🔗 inner_class

05.​Can you explain Java's garbage collection process?
JVM එකේ තියෙන garbage collector එකෙන් unreferenced objects හදුනගෙන,
heap memory එකෙන් ඉවත් කරයි.

🔗 GarbageCollectorExample

06.​What is Java 8's Stream API and how is it different from a collection?
Stream API: Introduced functional-style operations on streams of
elements.

Difference from Collection:
Stream doesn't store elements; it processes elements on-the-fly,
supporting functional-style operations like map, filter, and reduce.

🔗 stream_api

07.​What is the diamond problem in inheritance and how does Java solve it?
Java doesn't support multiple inheritance for classes.

(class එකක් multiple interfaces වලින් implement කරන්න පුලුවන්.)

08.​How does Java handle multiple inheritance?
Achieved through interfaces, allowing a class to implement multiple
interfaces.
(class එකක් multiple interfaces වලින් implement කරන්න පුලුවන්.)

 🔗 DiamondProblem

09.​Can you describe the Observer design pattern and its usage in Java?
Object අතර තියෙන one-to-many dependency එකක් අදහස් කරයි.
Subject object එකේ වෙනස්කමක ්වුනොත්, ඒකත් එක්ක dependency තියෙන
අනිත් observer objects වලටත් ඒ වෙනස්කම notify වෙලා automatically update
වෙනෝ.

https://github.com/TheMIU/Java/tree/main/src/inner_class
https://github.com/TheMIU/Java/blob/main/src/garbage_collector/GarbageCollectorExample.java
https://github.com/TheMIU/Java/tree/main/src/stream_api
https://github.com/TheMIU/Java/blob/main/src/oop/inheritance/DiamondProblem.java

distributed systems, event handling systems, GUI components වල use
වේ.

🔗 ObserverTest

10.​What are the differences between a HashSet, TreeSet, and
LinkedHashSet?
HashSet

●​ Uses HashMap to store objects.
●​ It doesn’t maintain order.

LinkedHashSet
●​ Uses LinkedHashMap to store objects.
●​ It maintains order.

TreeSet
●​ Uses TreeMap to store objects.
●​ It maintains order (Sorted to ascending by default)

🔗 Collection Framework

11.​How does JIT compilation work in Java?
Runtime එකේදි, Java bytecode එක, machine code එකට convert කරයි.

12.​Can you describe the Builder pattern and its implementation in Java?
Pattern: Creational pattern used to construct a complex object step by
step.

Implementation: Involves a builder class with methods to set properties
and a director class to manage the construction process.

https://docs.google.com/document/d/1vcvI0DAtFxIvAvgrvcnfcOtB7z3ScufNYAUl6sm2ySQ/edit
https://github.com/TheMIU/Design-Patterns-Impl/blob/main/src/O3_behavioral_design_patterns/observer/ObserverTest.java

🔗 BuilderPatternExample

13.​Can you describe the Factory Method design pattern and its
implementation in Java?
Object creation logic එක hide කරයි.

 Key Components
 1. Products (Product interface & Concrete products)
 2. Factory (Factory interface & Concrete factory)

Implementation:
🔗 FactoryTest

14.​What are the principles of SOLID in object-oriented programming?

https://github.com/TheMIU/Design-Patterns-Impl/blob/main/src/O1_creational_design_patterns/builder/BuilderPatternExample.java
https://github.com/TheMIU/Design-Patterns-Impl/blob/main/src/O1_creational_design_patterns/factory/FactoryTest.java

Rules නෙවේ, best practices.

1.​ Single Responsibility Principle (SRP)
 එක class එකකට තියෙන්න පුලුවන් එක responsibility එකයි.

2.​ Open/Closed Principle (OCP)
Class එකක්, ලේසියෙන් extend කරන්න පුලුවන් වෙන්න ඕන. Modify කරන
එක අමාරු වෙන්න ඕන.

3.​ Liskov Substitution Principle (LSP)

ඕනම subclass එකක්, parent class object එකකින් replace කරන්න පුලුවන්
වෙන්න ඕන, functionality break වෙන්නෙ නැතුව.

4.​ Interface Segregation Principle (ISP)
interface එකක් use කරන කෙනාට, ඒකෙ හැම function එකක්ම override
කරන්න කියල force නොකරන්න ඕන.

5.​ Dependency Inversion Principle (DIP)
Code එකක, high level module, low level module එක්ක dependency
එකක් තියෙන්න බෑ කියන එක. (depend වෙන්න ඕන interface එකක් එක්ක)

🔗 SOLID Principles යනු මොනවාද? - SOLID Principles in Sinhala
🔗 SOLID_principles

15.​What is meant by loose coupling in programming and how does Java
promote it?
Meaning:
Reducing dependencies between components or modules.

Java Promotion:
Dependency Injection, Interface orientation through Loose coupling
promote කරයි.

🔗 Spring

16.​How do you handle transaction management in Java?
Relational DB වලදි, JDBC වල java.sql.Connection interface එකෙන්.
Spring වලදි @Transactional annotation එකෙන්.

17.​How can you use Java to read and write files?
Reading: Use FileReader, BufferedReader, Scanner, or Files class.
Writing: Use FileWriter, BufferedWriter, PrintWriter, or Files class.

18.​What is meant by thread safety and how is it ensured in Java?
Meaning: Ensuring that shared resources can be accessed concurrently
without causing data corruption.

https://www.youtube.com/watch?v=x2y_lsIdC6c&list=WL&index=1
https://docs.google.com/document/d/1EiE1xjPk07dRjhrkPdGXUhfBlSqQKIVkN5znKbIxq7E/edit#heading=h.2jb40mqtof5
https://github.com/TheMIU/Java/blob/main/src/SOLID_principles.java

Java Methods: Synchronization using the synchronized keyword, or using
thread-safe classes from java.util.concurrent package.

🔗 SynchronizationExample

19.​What is the difference between a Java library and a Java framework?
Library: A collection of pre-written code that can be used in various
projects.
(ex: JDBC, Lombok, Jackson, JUnit)

Framework: An integrated set of software tools and components
providing a foundation for building applications.
(ex: Spring, Spring Boot, Hibernate)

20.​What are some popular libraries in Java for handling JSON?
Jackson: Provides JSON parsing and generation.
Gson: Google's library for JSON parsing.

🔗 Spring

21.​How does the Java Memory Model work?
The Java Memory Model (JMM) defines the allowable behavior of
multithreaded programs, and therefore describes when such reorderings
are possible. It places execution-time constraints on the relationship
between threads and main memory in order to achieve consistent and
reliable Java applications.

Definition: Describes how threads interact through memory.
Visibility: Guarantees visibility of changes made by one thread to other
threads.
Atomicity: Operations like reading and writing are atomic for reference
variables.

🔗 Java Memory Model in 10 minutes

22.​How can we ensure that a class is immutable in Java?

https://docs.google.com/document/d/1EiE1xjPk07dRjhrkPdGXUhfBlSqQKIVkN5znKbIxq7E/edit#heading=h.7ipo59x5gpwa
https://www.youtube.com/watch?v=Z4hMFBvCDV4
https://github.com/TheMIU/Java/blob/main/src/threads/SynchronizationExample.java

Rules: Declare class as final, make fields private and final, avoid mutator
methods, and ensure deep immutability for mutable fields.

🔗 ImmutableClass
​

23.​Can you explain what is function currying in Java?
Definition: Transforming a function that takes multiple arguments into a
sequence of functions, each taking a single argument.
Example: Using functional interfaces and lambda expressions.

🔗 16 Using Currying in Java
🔗 CurryingExample

24.​How is string immutability beneficial in Java?
Thread Safety:
In a multi-threaded environment, when different threads access the same
String/StringBuffer object, each thread sees the same value, and none
can alter the original content.
(Immutable - වෙනස් කළ නොහැකියි.)

Caching: Allows caching and optimization of string literals.

25.​What are the rules for method overloading and overriding in Java?

 Method overloading:
 * එකම class එකක් ඇතුලෙ
 * same name - different parameter count
 * same name - different parameter type
 * method හදන්න පුලුවන්.

🔗 MethodOverloadingExample

Method Overriding:
* Class 2 ක් extend වෙලා තියෙද්දි,
* Same name - Same Parameter count - Same parameter type
* Method හදන්න පුලුවන්.

​ (trough inheritance)

26.​What are marker interfaces in Java and why are they used?

https://www.youtube.com/watch?v=RkK-c2o0GQA
https://github.com/TheMIU/Java/blob/main/src/immutable_class/ImmutableClass.java
https://github.com/TheMIU/Java/blob/main/src/CurryingExample.java
https://github.com/TheMIU/Java/blob/main/src/MethodOverloadingExample.java

Definition: Interfaces with no methods (e.g., Serializable, Cloneable).

Usage: Indicate a capability or behavior. They serve as a marker for the
compiler or runtime.
(මොකක් හරි විශේෂ behavior එකක ්තියෙන class එකක් mark කරන්න use කරයි.)

Q&A 02 - 11

27.​Can you explain what is ‘ClassCastException’ in Java?
Definition: Thrown when an object is cast to an incompatible type.
Reasons: Attempting to cast an object of a class to a type it is not a
subclass of.

28.​Can you describe Java's exception hierarchy?

Throwable (Root): Error and Exception.
Error (Unchecked): Irrecoverable issues (e.g., OutOfMemoryError).
Exception (Checked/Unchecked): Exceptional conditions requiring
handling (e.g., IOException).

29.​What are the differences between ArrayList and LinkedList in Java?
ArrayList: Dynamic array, fast random access, slower for insertions and
deletions.
LinkedList: Doubly linked list, fast insertions and deletions, slower random
access.

30.​How can you create a thread-safe singleton in Java?
Two ways to do that,

1.​ Double-Checked Locking (Lazy Initialization)
2.​ Bill Pugh Singleton Pattern (Initialization-on-demand holder idiom)

🔗 thread_safe_singleton

31.​What are the different types of thread states in Java?
New: Created but not started.
Runnable: Ready to run, waiting for thread scheduler.
Blocked: Waiting for a monitor lock.

https://github.com/TheMIU/Java/tree/main/src/threads/thread_safe_singleton

Waiting: Waiting indefinitely for another thread to perform a specific
action.
Timed Waiting: Waiting for a specified amount of time.
Terminated: Execution completed.

Q&A 03 - 08

32.​How does the Java 8 Date and Time API improve upon the older date and
time classes?
Improvements: Addresses design flaws in older classes (Date and
Calendar).
Immutability: New classes like LocalDate and LocalTime are immutable.
Clarity: Separate classes for date, time, and datetime. Improved API for
manipulation and formatting.

33.​How can you use Regular Expressions in Java?
Usage: Pattern matching and manipulation of strings.
Classes: Pattern for compiling regex, Matcher for matching operations.
Methods: matches(), find(), replaceAll(), etc.

🔗 RegexExample

34.​Can you describe the structure and components of a Java class?
Structure: Package declaration, imports, class declaration, fields,
methods, constructors.
Components: Members (fields and methods), constructors, initializers,
nested classes.

35.​What is the purpose of a Java package and how is it used? Can you
explain the naming convention associated with it?
Purpose: Group related classes and provide namespace management.
Naming Convention: Lowercase, reverse domain name, followed by
project-specific package names (e.g., com.example.project).

36.​Can you explain the life cycle of a Java object?
Creation: Object instantiation.
Usage: Object is actively used.

https://github.com/TheMIU/Java/blob/main/src/RegexExample.java

Abandonment: Object becomes unreachable.
Garbage Collection: Memory is reclaimed by the garbage collector.

🔗 ObjectLifeCycleExample

37.​What are Java's bitwise and bit shift operators?
Bitwise Operators:

& (AND), | (OR), ^ (XOR), ~ (NOT)

Bit Shift Operators:
<< (left shift), >> (right shift), >>> (unsigned right shift).

38.​Can you explain the order of operator precedence and associativity rules

in Java?
Precedence: Higher precedence means an operator is applied first.

Associativity: Describes the order in which operators of the same
precedence are evaluated (left-to-right or right-to-left).

https://github.com/TheMIU/Java/blob/main/src/ObjectLifeCycleExample.java

🔗 OperatorPrecedenceExample
🔗 Java Operator Precedence - Javatpoint

39.​What is a static nested class in Java and how it differs from top-level
class?
Definition: A nested class declared as static within another class.
Difference: Can be instantiated without an instance of the outer class,
while a non-static nested class requires an instance.

🔗 StaticNestedClass

40.​Can you explain how the Java 8 foreach() method works?
Q&A 03 - 13

41.​What are the differences between the '&' and '&&' operators in Java?

https://github.com/TheMIU/Java/blob/main/src/OperatorPrecedenceExample.java
https://www.javatpoint.com/java-operator-precedence
https://github.com/TheMIU/Java/blob/main/src/inner_class/StaticNestedClass.java

'&' (Bitwise AND):
●​ Evaluates both operands, even if the left operand is false.

'&&' (Conditional AND):

●​ Uses short-circuit evaluation.
●​ If the first operand is false, the second operand is not evaluated.
●​ Good for performance

🔗 Bitwise_vs_Conditional_AND

42.​Can you explain how to use Java's try-with-resources feature?
Usage: Automatic resource management in try-catch blocks.

Syntax:

Benefit:

●​ Automatically closes resources like files, sockets, etc., after the try
block execution.

●​ More readable code and easy to write.
●​ Number of lines of code is reduced.

🔗 TryWithResourcesExample

43.​What is the purpose of a constructor in Java?
Purpose: Initializes the object's state when an instance is created.

Constructor characteristics

-​ Class එකේ නමින් හැදෙන
-​ Object creation එකේදි invoke වෙන
-​ Return type එකක් නැති
-​ special method එකක්

https://github.com/TheMIU/Java/blob/main/src/Bitwise_vs_Conditional_AND.java
https://github.com/TheMIU/Java/blob/main/src/TryWithResourcesExample.java

44.​How does a PriorityQueue work in Java and where is it used?

Definition: Implements a priority queue based on the natural ordering or
a specified comparator.
Usage: Often used in task scheduling and graph algorithms where
elements with higher priority are processed first.

🔗 PriorityQueueExample

45.​Can you explain the difference between ' public static void main' and '
public static main ' in Java?
'public static void main': Standard signature for the entry point of a Java
application. The method returns no value (void).

'public static main': Invalid syntax. Return type for the method is missing

46.​How do you create a custom annotation in Java?
Syntax: @interface CustomAnnotation { /* elements */ }
Usage: Apply to classes, methods, fields, etc., using @CustomAnnotation.

🔗 custom_annotation

47.​Can you explain the Liskov Substitution Principle and its importance in
Java programming?
Definition: Subtypes should be substitutable for their base types without
affecting program correctness.

Importance: Enables polymorphism and ensures that inheriting classes
can be used interchangeably with their base classes.

https://github.com/TheMIU/Java/blob/main/src/PriorityQueueExample.java
https://github.com/TheMIU/Java/tree/main/src/custom_annotation

🔗 SOLID_principles

48.​How does bounded type parameters work in Java Generics?
Usage: Limit the types that can be used as generic arguments.
Syntax: <T extends SomeType> (upper bound) or <T super SomeType>
(lower bound).
🔗 BoundedTypeExample

49.​What are the differences between List<Object> and List<?> in Java
Generics?
List<Object> : allows elements of any type, and type information is lost
when retrieving.
List<?> : allows elements of unknown type, and type information is
preserved when retrieving. (cannot add elements except null)

🔗 ObjectType_vs_UnknownType

50.​Can you explain the difference between <? super T> and <? extends T>?
<? super T>

●​ lower-bounded wildcard
●​ allowing objects of type T or its supertypes.

<? extends T>

●​ upper-bounded wildcard
●​ allowing objects of type T or its subtypes.

🔗 Upper_Lower_WildcardExample

https://github.com/TheMIU/Java/blob/main/src/SOLID_principles.java
https://github.com/TheMIU/Java/blob/main/src/generics/BoundedTypeExample.java
https://github.com/TheMIU/Java/blob/main/src/generics/ObjectType_vs_UnknownType.java
https://github.com/TheMIU/Java/blob/main/src/generics/Upper_Lower_WildcardExample.java

	🏠_Home_

