Lycée Echabbi MACHRAA ELAINE

TEST DIAGNOSTIQUE TRONC COMMUN

Pr. LATRACH Abdelkbir Année : 2021-2022

-----: Nom et prénom

Consignes générales :

- ☐ Faire un essai dans le brouillon avant d'écrire votre réponse finale sur la feuille.
- □ Durée du test est 1h :50min.

Exercice 1 : Calcul numérique :

35 min

Cocher la bonne réponse :

	Questions	Réponses proposées			
1	$\bullet \frac{1}{4} \times \frac{2}{5} + \frac{1}{5} =$	□ <u>8</u> <u>15</u>	$\frac{3}{10}$	<u>4</u> 15	7 10
2	$ \bullet \frac{2 - \frac{2}{3}}{\frac{4}{3}} = $	1	$\Box \frac{1}{2}$	□ - 1	□ 2
3	$\bullet \ \frac{3+5a}{3+2b} =$	1+5 <i>a</i> 1+2 <i>b</i>	$\frac{8a}{5b}$	$\frac{5a}{2b}$	Pas de simplification possible
4	• $\sqrt{12} + \sqrt{27}$	\Box $3\sqrt{5}$	□ √39	\Box 5 $\sqrt{3}$	□ √15
⑤	$\bullet \ \sqrt{\sqrt{2}-1} \times \sqrt{\sqrt{2}+1}$	\Box 2 $\sqrt{2}$	\Box $\sqrt{2}$	1	$\sqrt{2} + 2$
6	$\bullet \frac{1}{\sqrt{3}-\sqrt{2}}$	□ √6	$\sqrt{3}-\sqrt{2}$	\Box $\sqrt{6}$	$\sqrt{3} + \sqrt{2}$
7	$\bullet \ \ (-\ 2x)^2 =$	\Box $4x^2$	$-2x^2$	$-4x^2$	\Box 2 x^2
8	• Si $\frac{2}{x} = \frac{3}{5}$, alors:				
9	• L'écriture scientifique de 0,0000000153×10 ² est :	□ 15,3×10 ⁻⁶	□ 1,53×10 ⁶	□ 0,153×10 ⁻⁵	□ 1,53×10 ⁻⁶
10	$\bullet \frac{3^9 \times 3^7}{9^7} =$	□ 3 ²	□ 3 ⁻³	□ 3 ⁹	□ 3 ³

Exercice 2 : <u>Calcul littéral</u>

30

1)-Développement :

min

Développer puis réduire chacune des expressions suivantes :

$$\bullet 2(2x - 1) - 3(x + 2) =$$

$$\bullet (x+3)(2x-4) =$$

$$\bullet (3x - 1)^2 = ----$$

2)- Factorisation:

Factoriser les expressions suivantes :

$$\bullet 2x^2 - 6x = -----$$

$$\bullet 2(2x + 1) + x(2x + 1) =$$

$$\bullet 4x^2 - 25 = \dots$$
3)-Résolution d'équations:

Résoudre l'équation suivante : (E): 3(2x - 2) = x + 4.

4)-Résolution d'inéquations :

Résoudre l'équation suivante: (1): $x + 5 \le 4(x - 3)$.

5)-Résolution d'un système :

Résoudre le système suivant (S): $\{x - 2y = 1 \ 2x + 3y = 9 \ .$

Exercice 3: Ordre-Encadrement

(4) 15

min

1)- Soit x un nombre réel tel que : $x \ge 2$.

Compléter :

- 2x 1 -----

2)-Soient a et b deux nombres réels tels que : $1 \le a \le 3$ et $2 \le b \le 5$.

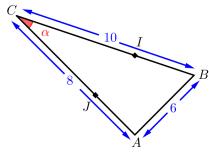
Compléter:

- $\bullet \quad --- \leq a + 2b \leq --- \qquad \bullet \quad --- \leq a b \leq --- \qquad \bullet \quad --- \leq \frac{a}{b} \leq ---$

Exercice 4: Géométrie plane

min

1)- Calcul vectoriel - Fonctions:


Cocher la bonne réponses :

	Questions	Réponses proposées			
1	• On a <i>I</i> (3; 5) et <i>J</i> (-1; 2), donc:	$\overrightarrow{IJ}(-4;-3)$ $\overrightarrow{IJ}=4$	$\vec{IJ}(4; -3)$ $IJ = 5$	$\vec{IJ}(-4;3)$ $\vec{IJ} = 2$	$\vec{l}J(4;3)$ $IJ = \sqrt{5}$
2	• Si $\overrightarrow{u} = 2\overrightarrow{AB} + 3\overrightarrow{BC}$, alors:	$\vec{u} = -\vec{AB} + 3\vec{AC}$	$\vec{u} = \vec{AB} - 2\vec{AC}$	$\vec{u} = \vec{AB} - 3\vec{AC}$	$\vec{v} = 2\vec{AB} - \vec{AC}$
3	• C A B	$\vec{BA} = \frac{3}{4}\vec{BC}$	$\overrightarrow{BC} = -\frac{1}{3}\overrightarrow{AC}$	$\overrightarrow{AB} = \frac{4}{3}\overrightarrow{BC}$	$\vec{AC} = -\frac{1}{3}\vec{AB}$
4	• Si: $\overrightarrow{MN} = -\frac{2}{3}\overrightarrow{PQ}$, alors	\overrightarrow{MN} et \overrightarrow{PQ} ont le même sens.	☐ \overrightarrow{MN} et \overrightarrow{PQ} n'ont pas la même direcction.	□ (MN)//(PQ)	☐ <i>MNQP</i> est un parallélogramme
(5)	 L'équation réduite de la droite passant par le point A(0; 1) et de coefficient directeur m = 3 est : 	y = 3x + 1	y = -3x + 1	y = 3x - 1	y = -3x - 1
6	• L'image de -4 par la fonction affine f telle que : $f(x) = \frac{1}{2}x + 3$ est:	$\frac{3}{4}$	1	$-\frac{3}{4}$	□ -1
7	•La représentation graphique de la fonction linéaire g telle que : g(x) = 2x est :	3 -2 -1 0 1 2	3 -2 -1 0 1 2	-2 -1 0 1 2 3 -1 -1 -2	-2 -1 9 1 2 S

2)- Théorème de Pythagore - Théorème de Thales - Calcul trigonométrique :

On considère la figure suivante

telle que :
$$CI = \frac{2}{3}CB \text{ et } CJ = \frac{2}{3}CA.$$

<u> </u>	1)- Montrer que le triangle ABC est rectangle en A .
	2)- Completer : • $cos(α) =$
	• $sin(\alpha) = \cdots$ • $tan(\alpha) = \cdots$
B	3)- Montrer que les droites (AB) et (IJ) son parallèles .
	4)- Calculer la distance <i>IJ</i> .