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Abstraction, Agents, and ELK 

Definitions 
We start with a few definitions. 
Let S be the set of world states, and assume a world transition function  T : S × A → S , where A 
is a set of actions. 
We define an agent X to be a 4-tuple of functions Sensorₓ, Predictₓ, Extractₓ, and Actₓ, where: 

●​ Sensorₓ is a surjective “abstraction” function of type  S → Oₓ , where Oₓ is a type for X's 
abstracted observations. 

●​ Predictₓ is a prediction function of type Sₓ × Oₓ → Sₓ, where Sₓ represents the type of X's 
internal knowledge of the world. 

●​ Extractₓ is the agent's interface with the outside world of type Sₓ → Oₓ (i.e., what it 
expects the world to look like based on its internal knowledge). 

●​ Actionₓ is a function from Sₓ to Aₓ, where Aₓ denotes X's contribution to actions on the 
world. If there are multiple agents, we assume that an action A contains one action from 
each agent. 

 
Using these definitions, we can model a simple instance of the ELK problem. Suppose there are 
two agents: a sophisticated AI called M and a human agent H.  Initially, these agents and the 
world are in states S⁰�, S⁰ₕ, and S⁰, respectively.  At each timestep, both agents observe the 
current state of the world with their sensors, update their worldviews using their prediction 
function, produce an action, and then apply that action to the current world state, resulting in a 
new world state.  This process is depicted in the figure below. 
 

 



 
We have the human's utility function U� : S� → ℚ, which is defined on the human's model of 
reality. We would like to lift U� to a version Uₘ : Sₘ → ℚ that the machine can use to influence 
the world in way that is agreeable to the human. 
 
One way to do this is to somehow learn a mapping F : Sₘ → S�.  Then we can derive Uₘ = F ∘ 
U�.  Naively, we could sample world simulations to create sequences of (Sₘ, S�) and use 
these to learn a mapping.  However, this method might lose important latent information in M. 
Namely, we want to include situations where the sequence of world states is sufficiently 
complicated that the human is now confused about the true state of the world. This could 
include situations where the sensor has been tampered with, for instance, but only the AI is 
sophisticated enough to have noticed. If we map from Sₘ to S� using plain co-occurrence, we 
will learn a function that forgets that the sensors are now faulty. Instead, we want a human 
concept that is semantically as close as possible to the machine concept, not just one that 
commonly co-occurs with a machine concept. 
 
An additional issue with the previous idea is that the embedding spaces of Sₘ and S� are 
arbitrary, and the machine could use a representation of S� that creates arbitrary distortions in 
F by contorting Predict� edges. Let Gx denote the state machine with nodes as states in Sx and 
edges given by Predictx. Instead we could use shortest path length in Gh to measure the 
distance between states.  
 
To this end, we propose learning a reversible function F : Sₘ → S� by minimizing the difference 
between two paths from a state sₘ, one in which the machine's prediction function is used and 
one in which the human's prediction function is used.  Concretely, we propose minimizing 
Dist(s�₁, s�₂) + λ|U(s�₁)-U(s�₂)| where s�₁ = F(Predictₘ(sₘ,oₘ)) and s�₂ = 
Predict�(F(sₘ),o�), Dist is shortest path distance in Gh, and observations oₘ and o� are 
generated by the same underlying state S. Predictₘ is trained in the first place to enact a 
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function on a finite set of state machine vertices, whether through one-hot encodings and 
softmax or with rounding of input and output.  
 
 

 
 

Details 
●​ We previously tried to minimize the difference between Predictₘ and F' ∘ Predict� ∘ F, 

but this provides an extra degree of freedom in F and F', allowing them to memorize and 
perfectly reconstruct Sₘ. Having a single F disallows this possibility. 

●​ The utility regularization term provides a notion of differential caring about accuracy in 
predictions that are more utility relevant. 

●​ Structural reasoning can lead to non-unique maps. Imagine Sₘ = S� = {Diamond, 
NoDiamond}. This optimization cannot distinguish between identity and inverting F’s. 
Another example is Sₘ = S� = ℤ and Predictₘ = Predict� = λx.x+1, where could learn F 
= λx.k+x for any integer k. We are assuming that in practice connections between states 
are sufficiently dense that such exact ties do not occur. 

●​ One might think that F does not need to use the accuracy of Predictₘ since the diagram 
paths are meeting in S�. This cannot be true because F ∘ Predictₘ = Predict� ∘ F 
implies Predictₘ = F⁻¹ ∘ Predict� ∘ F. 

 
Reasoning about the behaviour 
It is useful to make a few simplifying assumptions to reason about the behavior of this setup. 
Suppose that there are no actions, the human and machine have the same observation type, 
and that Sₘ and S� are both ℚ². Fix a specific background observation, and Predict� and 
Predictₘ’s state machines form directed graphs on ℚ², which we’ll denote G� and Gₘ. F will 
map nodes and edges from Gₘ to G�. Then a self loop in Gₘ must correspond to a self-loop in 
G�, and a cycle in Gₘ must correspond to at least one cycle in G�. In general, I conjecture that 
this mapping will preserve the global structure of the AI’s state machine as much as possible 
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while using the human edges, and it will prefer to glue machine nodes together rather than tear 
them apart.  
 
Experiment. We will test this theoretical model using a cellular automata setup.  We will train 
predictive agents H and M, and then learn the knowledge representation mapping F. We will 
measure the degree to which machine states can be reconstructed from human states, under 
various degrees of separation between the sophistication of human and machine models. 
 
Concretely, let we will let the machine and human sensors compute abstractions of the 
automata cells (e.g., 2 by 2 maximum) and let the Actions correspond to bit flips in arbitrary 
positions. Both agents' prediction functions can be implemented as neural networks and 
supervised by runs using some automata transition function (e.g., the Game of Life) and 
comparing output of the Extract function to observations. The machine can be trained longer to 
simulate a more in-depth model of reality for the purposes of the experiment, and in reality 
Predict� could be supervised by human predictions. 
 

Counterexamples 
ELK seems particularly hard when these Bayes nets satisfy the following properties: 

1.​ There are arbitrarily severe “ontology mismatches” between the predictor’s Bayes net 
and the human’s Bayes net, such that specifying the direct translation between them can 
be very complex. 

Both Sₘ and S� can be represented as vector spaces of potentially different dimensionality. 
Since S� is actually the machine’s simulation of the real human state, the work has already 
been done in translating the state to a fixed language. Now learning the relationship between 
Sₘ and S� as vector spaces could still be arbitrarily complicated, but this learning process can 
be discharged by appeal to the sophistication of future ML learning algorithms. 

2.​ The human’s Bayes net is simpler than the predictor’s Bayes net, and the gap can be 
arbitrarily large. 

If the human’s state machine is much simpler, many edges just end up getting compressed into 
identity. If the topology of the AI’s state machine is fundamentally incompatible with what can be 
expressed using Predict�, then a minimally violating choice must be made. But maybe if the 
shapes are truly incompatible, local fidelity is the best we can ask for, and maybe this is not 
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terrible since it matches our state machine up to some number of transitions in expectation. 

 

3.​ The predictor’s Bayes net is arbitrarily large, and individual nodes of the human’s Bayes 
net depend on a constant fraction of the predictor’s Bayes net. Therefore directly 
translating between the two Bayes nets takes arbitrarily much computation. 

When many machine states map to a single human state, each internal edge is mapped to the 
identity transition.  

 

 

4.​ It’s computationally easy for the human simulator to do good inference in the human’s 
Bayes net—at least good enough inference that it answers questions as well as the 
direct translator—and the gap between this complexity and the complexity of direct 
translation can be arbitrarily large. More precisely, a human interrogator can’t think of 
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questions which require the human simulator to do hard inference. However, we can’t 
rule out the possibility that you, the algorithm-designer, will think of some trick they can 
use to generate hard questions. 

It may be difficult to sample pieces of the space where the machine and human models strongly 
diverge while training F, and it would only make sense that we are mapping the global structure 
of Predictₘ faithfully if we can train with a sufficiently representative sample of machine states. 

But since the human is actually the AI’s model of a human, the human can be placed in the 
algorithmic loop, and a model could be trained to propose machine states and where the 
predictions on Sₘ and F(Sₘ) currently diverge. In other words, this can be helped with a 
sufficiently strong active learning procedure. 

5.​ There are situations where a model which is trying to answer a question will first be able 
to predict what (potentially mistaken) belief the human-with-assistance will have about 
that question before it knows the true answer to the question. 

This proposal is bypassing question-asking by learning the translation between ontologies 
directly. 

6.​ While the predictor’s Bayes net is very large, it has a short succinct description which is 
simpler than the human’s Bayes net, and that gap is arbitrarily large. Think of simple 
physical laws that describe arbitrarily computationally expensive simulations, or simple 
cognitive heuristics that are very widely applicable. 

I am visualizating this as a high-dimensional Sₘ which has a lower dimensional representation. 
In this case, if anything it should then be easier to map to a lower dimensional S�.  

7.​ There are sequences of actions for which the predictor’s Bayes net correctly anticipates 
that tampering will occur yet nothing looks suspicious to the human’s Bayes net. 

Such a machine state will not map to such a human state because the human states with 
tampering and non-tampering should have quite differently shaped state neighborhoods. The 
truth of this claim should scale with the density of connections, which will decrease the odds of 
having similar neighborhoods with chance. And the density of connections should be high when 
you also take into account that each state gets an outgoing edge for each possible observation. 

8.​ After tampering has occurred, it is possible that no sequence of further actions reveal 
that anything is wrong, e.g. the camera and actuators may have been completely 
disconnected from the world and replaced with a convincing-to-humans simulation. 

I think that the presence of such a sophisticated adversary would land you in a very different 
part of human state space though, so I believe the machine should still be able to learn an F 
that separates these cases. I am unsure about this. 
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9.​ There are sequences of actions leading to undetectable tampering that have no 
human-comprehensible similarities to sequences of actions leading to detectable 
tampering; in particular, the early steps of this undetectable tampering cannot be used to 
perform detectable tampering. 

In the process of learning F, we do not use the human’s choice of S�, but rather put the human 
into a particular state of knowledge such that it will correctly predict the next state. In situations 
where the human would be fooled in even a single prediction step, I believe that this model 
would learn a “white lie” F(sₘ) such that Predictₘ(F(sₘ)) is still correct. 

10.​Self-reference 

Suppose there was an sₘ in Sₘ that included the belief that “sₓ, oₓ, and Predictₓ are correct 
where X=me”, and “me” is lazily computed. If we can represent such a statement, then neither 
Pₘ or P� will modify sₘ or F(sₘ). However, the loss on this example will still be high insofar as 
sₘ contains other object level information besides this meta-claim, since that content will be 
updated differently by Pₘ and P�. 
 

11. Heat Death 
 
I originally thought that F needed to be invertible because otherwise I could get zero loss by 
mapping each sₘ to a single human state that is fixed under Predict�, such as the heat death of 
the universe. However, the heat death is not actually fixed under all observations – if I think that 
it is heat death and then I observe a sun, I no longer think we are in heat death, and if I see 
crazy random bits I will think that I am in a simulation. In fact, if there is a state of human 
knowledge such that no observation can change it, then the human has a broken epistemology 
and it makes sense that we learn a degenerate F. 
 

True Counterexamples and Resolutions 
1.​ Embedded Agency 

 
There is likely some way of breaking this proposal by using the fact that Predictₘ and Predict� 
are actually themselves implemented by the transition function of the universe T.  
 
For instance, this could mean that insofar as running T affects the current state S, running 
Predictₘ or Predict� also affects S. If this is the case, there is no consistent function for F to 
learn. In response, here is an alternate setup that I believe works in the setting where agents 
are part of their environments. 
 
We still have a state S and transition function T : S → S. But now we want to treat an agent as 
purely an abstraction of the state Aₓ : S → Sₓ, where Sₓ is still a notion of the internal state of an 
agent. The key idea is that the agent’s transition function is now lifted from the universe's 
transition function: Tₓ : Sₓ → Sₓ := Aₓ⁻¹ . T . Aₓ. I’ll require an invertible abstraction Aₓ so that Tₓ is 
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easily implementable, though I admit this does not capture the notion of an abstraction that 
throws away information. Now the Agency of an abstraction Aₓ over a sequence of state 
machine transitions is quantified by how much Tₓ keeps the internal state the same.  
 
Agency : Aₓ → Q := L₂(map(L₂, map(Pₓ, Prevₙ), Nextₙ)) 
   where Prevₙ := S⁰,...,Sⁿ, Nextₙ := S¹,...,Sⁿ⁺¹, st ∀ k. T(S^k) = Sᵏ⁺¹ 
 
Now that we a notion of agent, we can use Aₘ and A� to denote the machine and human 
agent-like abstraction functions respectively. Now this proposal is to learn an invertible F st L₂(F 
. T�, Tₘ . F) is minimized. Notice that this can be written purely in terms of T, Aₘ, and A�: L₂(F 
. A�⁻¹ . T . A�, Aₘ⁻¹ . T . Aₘ . F). 
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