
This submission is mostly a copy of “Scott Viteri ELK contest
submissions #1”, with highlighted changes as per Mark Xu’s request
over email.

Abstraction, Agents, and ELK

Definitions
We start with a few definitions.
Let S be the set of world states, and assume a world transition function T : S × A → S , where A
is a set of actions.
We define an agent X to be a 4-tuple of functions Sensorₓ, Predictₓ, Extractₓ, and Actₓ, where:

●​ Sensorₓ is a surjective “abstraction” function of type S → Oₓ , where Oₓ is a type for X's
abstracted observations.

●​ Predictₓ is a prediction function of type Sₓ × Oₓ → Sₓ, where Sₓ represents the type of X's
internal knowledge of the world.

●​ Extractₓ is the agent's interface with the outside world of type Sₓ → Oₓ (i.e., what it
expects the world to look like based on its internal knowledge).

●​ Actionₓ is a function from Sₓ to Aₓ, where Aₓ denotes X's contribution to actions on the
world. If there are multiple agents, we assume that an action A contains one action from
each agent.

Using these definitions, we can model a simple instance of the ELK problem. Suppose there are
two agents: a sophisticated AI called M and a human agent H. Initially, these agents and the
world are in states S⁰�, S⁰ₕ, and S⁰, respectively. At each timestep, both agents observe the
current state of the world with their sensors, update their worldviews using their prediction
function, produce an action, and then apply that action to the current world state, resulting in a
new world state. This process is depicted in the figure below.

We have the human's utility function U� : S� → ℚ, which is defined on the human's model of
reality. We would like to lift U� to a version Uₘ : Sₘ → ℚ that the machine can use to influence
the world in way that is agreeable to the human.

One way to do this is to somehow learn a mapping F : Sₘ → S�. Then we can derive Uₘ = F ∘
U�. Naively, we could sample world simulations to create sequences of (Sₘ, S�) and use
these to learn a mapping. However, this method might lose important latent information in M.
Namely, we want to include situations where the sequence of world states is sufficiently
complicated that the human is now confused about the true state of the world. This could
include situations where the sensor has been tampered with, for instance, but only the AI is
sophisticated enough to have noticed. If we map from Sₘ to S� using plain co-occurrence, we
will learn a function that forgets that the sensors are now faulty. Instead, we want a human
concept that is semantically as close as possible to the machine concept, not just one that
commonly co-occurs with a machine concept.

An additional issue with the previous idea is that the embedding spaces of Sₘ and S� are
arbitrary, and the machine could use a representation of S� that creates arbitrary distortions in
F by contorting Predict� edges. Let Gx denote the state machine with nodes as states in Sx and
edges given by Predictx. Instead we could use shortest path length in Gh to measure the
distance between states.

To this end, we propose learning a reversible function F : Sₘ → S� by minimizing the difference
between two paths from a state sₘ, one in which the machine's prediction function is used and
one in which the human's prediction function is used. Concretely, we propose minimizing
Dist(s�₁, s�₂) + λ|U(s�₁)-U(s�₂)| where s�₁ = F(Predictₘ(sₘ,oₘ)) and s�₂ =
Predict�(F(sₘ),o�), Dist is shortest path distance in Gh, and observations oₘ and o� are
generated by the same underlying state S. Predictₘ is trained in the first place to enact a

1

function on a finite set of state machine vertices, whether through one-hot encodings and
softmax or with rounding of input and output.

Details
●​ We previously tried to minimize the difference between Predictₘ and F' ∘ Predict� ∘ F,

but this provides an extra degree of freedom in F and F', allowing them to memorize and
perfectly reconstruct Sₘ. Having a single F disallows this possibility.

●​ The utility regularization term provides a notion of differential caring about accuracy in
predictions that are more utility relevant.

●​ Structural reasoning can lead to non-unique maps. Imagine Sₘ = S� = {Diamond,
NoDiamond}. This optimization cannot distinguish between identity and inverting F’s.
Another example is Sₘ = S� = ℤ and Predictₘ = Predict� = λx.x+1, where could learn F
= λx.k+x for any integer k. We are assuming that in practice connections between states
are sufficiently dense that such exact ties do not occur.

●​ One might think that F does not need to use the accuracy of Predictₘ since the diagram
paths are meeting in S�. This cannot be true because F ∘ Predictₘ = Predict� ∘ F
implies Predictₘ = F⁻¹ ∘ Predict� ∘ F.

Reasoning about the behaviour
It is useful to make a few simplifying assumptions to reason about the behavior of this setup.
Suppose that there are no actions, the human and machine have the same observation type,
and that Sₘ and S� are both ℚ². Fix a specific background observation, and Predict� and
Predictₘ’s state machines form directed graphs on ℚ², which we’ll denote G� and Gₘ. F will
map nodes and edges from Gₘ to G�. Then a self loop in Gₘ must correspond to a self-loop in
G�, and a cycle in Gₘ must correspond to at least one cycle in G�. In general, I conjecture that
this mapping will preserve the global structure of the AI’s state machine as much as possible

2

while using the human edges, and it will prefer to glue machine nodes together rather than tear
them apart.

Experiment. We will test this theoretical model using a cellular automata setup. We will train
predictive agents H and M, and then learn the knowledge representation mapping F. We will
measure the degree to which machine states can be reconstructed from human states, under
various degrees of separation between the sophistication of human and machine models.

Concretely, let we will let the machine and human sensors compute abstractions of the
automata cells (e.g., 2 by 2 maximum) and let the Actions correspond to bit flips in arbitrary
positions. Both agents' prediction functions can be implemented as neural networks and
supervised by runs using some automata transition function (e.g., the Game of Life) and
comparing output of the Extract function to observations. The machine can be trained longer to
simulate a more in-depth model of reality for the purposes of the experiment, and in reality
Predict� could be supervised by human predictions.

Counterexamples
ELK seems particularly hard when these Bayes nets satisfy the following properties:

1.​ There are arbitrarily severe “ontology mismatches” between the predictor’s Bayes net
and the human’s Bayes net, such that specifying the direct translation between them can
be very complex.

Both Sₘ and S� can be represented as vector spaces of potentially different dimensionality.
Since S� is actually the machine’s simulation of the real human state, the work has already
been done in translating the state to a fixed language. Now learning the relationship between
Sₘ and S� as vector spaces could still be arbitrarily complicated, but this learning process can
be discharged by appeal to the sophistication of future ML learning algorithms.

2.​ The human’s Bayes net is simpler than the predictor’s Bayes net, and the gap can be
arbitrarily large.

If the human’s state machine is much simpler, many edges just end up getting compressed into
identity. If the topology of the AI’s state machine is fundamentally incompatible with what can be
expressed using Predict�, then a minimally violating choice must be made. But maybe if the
shapes are truly incompatible, local fidelity is the best we can ask for, and maybe this is not

3

terrible since it matches our state machine up to some number of transitions in expectation.

3.​ The predictor’s Bayes net is arbitrarily large, and individual nodes of the human’s Bayes
net depend on a constant fraction of the predictor’s Bayes net. Therefore directly
translating between the two Bayes nets takes arbitrarily much computation.

When many machine states map to a single human state, each internal edge is mapped to the
identity transition.

4.​ It’s computationally easy for the human simulator to do good inference in the human’s
Bayes net—at least good enough inference that it answers questions as well as the
direct translator—and the gap between this complexity and the complexity of direct
translation can be arbitrarily large. More precisely, a human interrogator can’t think of

4

questions which require the human simulator to do hard inference. However, we can’t
rule out the possibility that you, the algorithm-designer, will think of some trick they can
use to generate hard questions.

It may be difficult to sample pieces of the space where the machine and human models strongly
diverge while training F, and it would only make sense that we are mapping the global structure
of Predictₘ faithfully if we can train with a sufficiently representative sample of machine states.

But since the human is actually the AI’s model of a human, the human can be placed in the
algorithmic loop, and a model could be trained to propose machine states and where the
predictions on Sₘ and F(Sₘ) currently diverge. In other words, this can be helped with a
sufficiently strong active learning procedure.

5.​ There are situations where a model which is trying to answer a question will first be able
to predict what (potentially mistaken) belief the human-with-assistance will have about
that question before it knows the true answer to the question.

This proposal is bypassing question-asking by learning the translation between ontologies
directly.

6.​ While the predictor’s Bayes net is very large, it has a short succinct description which is
simpler than the human’s Bayes net, and that gap is arbitrarily large. Think of simple
physical laws that describe arbitrarily computationally expensive simulations, or simple
cognitive heuristics that are very widely applicable.

I am visualizating this as a high-dimensional Sₘ which has a lower dimensional representation.
In this case, if anything it should then be easier to map to a lower dimensional S�.

7.​ There are sequences of actions for which the predictor’s Bayes net correctly anticipates
that tampering will occur yet nothing looks suspicious to the human’s Bayes net.

Such a machine state will not map to such a human state because the human states with
tampering and non-tampering should have quite differently shaped state neighborhoods. The
truth of this claim should scale with the density of connections, which will decrease the odds of
having similar neighborhoods with chance. And the density of connections should be high when
you also take into account that each state gets an outgoing edge for each possible observation.

8.​ After tampering has occurred, it is possible that no sequence of further actions reveal
that anything is wrong, e.g. the camera and actuators may have been completely
disconnected from the world and replaced with a convincing-to-humans simulation.

I think that the presence of such a sophisticated adversary would land you in a very different
part of human state space though, so I believe the machine should still be able to learn an F
that separates these cases. I am unsure about this.

5

9.​ There are sequences of actions leading to undetectable tampering that have no
human-comprehensible similarities to sequences of actions leading to detectable
tampering; in particular, the early steps of this undetectable tampering cannot be used to
perform detectable tampering.

In the process of learning F, we do not use the human’s choice of S�, but rather put the human
into a particular state of knowledge such that it will correctly predict the next state. In situations
where the human would be fooled in even a single prediction step, I believe that this model
would learn a “white lie” F(sₘ) such that Predictₘ(F(sₘ)) is still correct.

10.​Self-reference

Suppose there was an sₘ in Sₘ that included the belief that “sₓ, oₓ, and Predictₓ are correct
where X=me”, and “me” is lazily computed. If we can represent such a statement, then neither
Pₘ or P� will modify sₘ or F(sₘ). However, the loss on this example will still be high insofar as
sₘ contains other object level information besides this meta-claim, since that content will be
updated differently by Pₘ and P�.

11. Heat Death

I originally thought that F needed to be invertible because otherwise I could get zero loss by
mapping each sₘ to a single human state that is fixed under Predict�, such as the heat death of
the universe. However, the heat death is not actually fixed under all observations – if I think that
it is heat death and then I observe a sun, I no longer think we are in heat death, and if I see
crazy random bits I will think that I am in a simulation. In fact, if there is a state of human
knowledge such that no observation can change it, then the human has a broken epistemology
and it makes sense that we learn a degenerate F.

True Counterexamples and Resolutions
1.​ Embedded Agency

There is likely some way of breaking this proposal by using the fact that Predictₘ and Predict�
are actually themselves implemented by the transition function of the universe T.

For instance, this could mean that insofar as running T affects the current state S, running
Predictₘ or Predict� also affects S. If this is the case, there is no consistent function for F to
learn. In response, here is an alternate setup that I believe works in the setting where agents
are part of their environments.

We still have a state S and transition function T : S → S. But now we want to treat an agent as
purely an abstraction of the state Aₓ : S → Sₓ, where Sₓ is still a notion of the internal state of an
agent. The key idea is that the agent’s transition function is now lifted from the universe's
transition function: Tₓ : Sₓ → Sₓ := Aₓ⁻¹ . T . Aₓ. I’ll require an invertible abstraction Aₓ so that Tₓ is

6

easily implementable, though I admit this does not capture the notion of an abstraction that
throws away information. Now the Agency of an abstraction Aₓ over a sequence of state
machine transitions is quantified by how much Tₓ keeps the internal state the same.

Agency : Aₓ → Q := L₂(map(L₂, map(Pₓ, Prevₙ), Nextₙ))
 where Prevₙ := S⁰,...,Sⁿ, Nextₙ := S¹,...,Sⁿ⁺¹, st ∀ k. T(S^k) = Sᵏ⁺¹

Now that we a notion of agent, we can use Aₘ and A� to denote the machine and human
agent-like abstraction functions respectively. Now this proposal is to learn an invertible F st L₂(F
. T�, Tₘ . F) is minimized. Notice that this can be written purely in terms of T, Aₘ, and A�: L₂(F
. A�⁻¹ . T . A�, Aₘ⁻¹ . T . Aₘ . F).

7

	This submission is mostly a copy of “Scott Viteri ELK contest submissions #1”, with highlighted changes as per Mark Xu’s request over email.
	Abstraction, Agents, and ELK
	Definitions
	Details
	Counterexamples
	True Counterexamples and Resolutions

