




Assignment question

S. No	Part A Each Question Contains 2 Marks	Marks	BTL	CO
1.	State the “law of parallelogram of forces”.	2	BTL-1	CO1
2.	Define the terms: scalars and vectors with examples.	2	BTL-1	CO1
3.	What is resultant of a system of forces? Write the equation as per the method of resolution.	2	BTL-1	CO1
4.	Classify the different types of system of forces.	2	BTL-2	CO1
5.	What is meant by free body diagram? State its use with examples.	2	BTL-2	CO1

UNIT –I				
S.No	Part B Each Question Contains 12 Marks	Marks	BTL	CO
1.(a)	Find the magnitude of the two forces, such that if they act at right angles, their resultant is $\sqrt{10}$ N. But if they Act at 60° , their resultant is $\sqrt{13}$ N.	12	BTL-5	CO1
(b)	The forces 20 N, 30 N, 40 N, 50 N and 60 N are acting at one of the angular points of a regular hexagon, towards the other five angular points, taken in order. Determine the magnitude and direction of the resultant force.		BTL-5	
		12	BTL-5	CO1
2.(a)	A System of forces are acting at the corners of a rectangular block as shown in figure below. Estimate the magnitude and direction of the resultant force.		BTL-5	
		12	BTL-5	CO1
(b)	<p>The following forces act at a point :</p> <ul style="list-style-type: none"> (i) 20 N inclined at 30° towards North of East, (ii) 25 N towards North, (iii) 30 N towards North West, and (iv) 35 N inclined at 40° towards South of West. <p>Calculate the magnitude and direction of the resultant force.</p>		BTL-3	

3.(a)	<p>A horizontal line PQRS is 12 m long, where $PQ = QR = RS = 4$ m. Forces of 1000 N, 1500 N, 1000 N and 500 N act at P, Q, R and S respectively with downward direction. The lines of action of these forces make angles of 90°, 60°, 45° and 30° respectively with PS. Find the magnitude, direction and position of the resultant force.</p>		BTL-5
(b)	<p>A uniform wheel of 600 mm diameter, weighing 5 kN rests against a rigid rectangular block of 150 mm height as shown in Figure below.</p> <p>Estimate the least pull, through the centre of the wheel, required just to turn the wheel over the corner A of the block. Also find the reaction on the block. Take all the surfaces to be smooth.</p>	12	CO1
4.(a)	<p>A machine component of length 2.5 meters and height 1 meter is carried upstairs by two men, who hold it by the front and back edges of its lower face. If the machine component is inclined at 30° to the horizontal and weighs 100 N. Determine how much of the weight each man supports?</p>	12	BTL-5 CO1

5.(a)	<p>An electric light fixture weighting 15 N hangs from a point C, by two strings AC and BC. The string AC is inclined at 60° to the horizontal and BC at 45° to the horizontal as shown in Figure below.</p> <p>Using Lami's theorem, Determine the forces in the strings AC and BC.</p>	12	BTL-5	CO1
(b)	<p>A light string ABCDE whose extremity A is fixed, has weights W_1 and W_2 attached to it at B and C. It passes round a small smooth peg at D carrying a weight of 300 N at the free end E as shown in Figure below.</p> <p>If in the equilibrium position, BC is horizontal and AB and CD make 150° and 120° with BC, find</p> <ol style="list-style-type: none"> Tensions in the portion AB, BC and CD of the string and Magnitudes of W_1 and W_2. 		BTL-5	