Практическое занятие 1

Тема: Составление уравнений окислительно-восстановительных реакций методом электронного баланса и полуреакций.

Цель занятия: сформировать умение определять степени окисления элементов, составлять электронные уравнения, составлять уравнения окислительно-восстановительных реакций методом электронного баланса и полуреакций, определять окислитель и восстановитель.

Общие сведения

Все химические реакции **по признаку изменения степеней окисления** участвующих в них атомов можно разделить на два типа: **ОВР** (протекающие с изменением степеней окисления) и **не ОВР**.

Степень окисления – условный заряд атома в молекуле, рассчитанный, исходя из предположения, что в молекуле существуют только ионные связи.

Для определения принадлежности той или иной реакции к окислительно-восстановительной, необходимо сделать следующее:

- 1. Определить степени окисления каждого элемента в левой и в правой частях;
- 2. Сравнить степени окисления одного и того же элемента справа и слева;
- 3. Сделать вывод: если степени окисления слева и справа у одного элемента отличаются, то это OBP. Если нет, то данная реакция не проявляет окислительно-восстановительных свойств.

ЛАЙФХАК: Если с одной стороны есть любое простое вещество, то это 100% OBP

Любая ОВР представляет собой совокупность процессов отдачи и присоединения электронов.

Окислители — это частицы (атомы, молекулы или ионы), которые принимают электроны в ходе химической реакции. При этом степень окисления окислителя понижается, а сами окислители восстанавливаются.

Восстановители — это частицы (атомы, молекулы или ионы), которые отдают электроны в ходе химической реакции. При этом степень окисления восстановителя повышается, а сами восстановители окисляются.

Классификация ОВР

Окислительно-восстановительные реакции принято делить на четыре типа:

1. Межмолекулярные реакции

Протекают с изменением степени окисления разных элементов из разных реагентов. При этом образуются разные продукты окисления и восстановления.

2. Внутримолекулярные реакции

Протекают с изменением степени окисления разных элементов из одного реагента. При этом образуются разные продукты окисления и восстановления.

- 3. **Реакции** диспропорционирования (самоокисления-самовосстановления). Окислитель и восстановитель один и тот же элемент одного реагента, который при этом переходит в разные продукты.
 - 4. Сопропорционирование (контрдиспропорционирование)

Окислитель и восстановитель — это один и тот же элемент, который из разных реагентов переходит в один продукт. Реакция, обратная диспропорционированию.

Для составления уравнений OBP можно использовать метод электронного баланса (электронных схем) или метод электронно-ионного баланса.

Метод электронного баланса

При расстановке коэффициентов в уравнениях OBP придерживаются следующего плана:

- 1. Запишем схемы реакций, вычислим степени окисления элементов и определим элементы, у которых они меняются.
- 2. Составим схемы, отражающие процессы перехода электронов
- 3. Определим, какой процесс является окислением, а какой восстановлением; какой элемент является окислителем, а какой восстановителем.
- 4. Уравняем число отданных и принятых электронов. Для этого найдём наименьшее общее кратное для числа отданных и числа принятых электронов. В результате деления наименьшего общего кратного на число отданных и принятых электронов находим коэффициенты.
- 5. Перенесём коэффициенты в исходную схему, преобразуя её в уравнение реакции.

Метод электронно-ионного баланса:

В методе полуреакций при составлении уравнений ОВР следует придерживаться той же формы записи, что и для уравнений реакций ионного обмена, а именно: в виде ионов записывают формулы сильных электролитов (сильных кислот, щелочей, растворимых средних солей); в молекулярной форме записывают формулы малорастворимых, малодиссоциирующих и газообразных соединений.

Используя метод полуреакций, практически всегда приходится сталкиваться с необходимостью уравнивать число атомов кислорода в левой и правой части схемы полуреакции. В зависимости от среды — кислой, нейтральной или щелочной — при уравнивании числа атомов кислорода нужно учитывать следующие правила:

- *В кислых средах избыток кислорода* в исходных веществах по сравнению с продуктами связывается ионами водорода с образованием молекул воды.
- *В нейтральных и щелочных средах избыток кислорода* связывается молекулами воды с образованием гидроксид-ионов.
- *При недостатке кислорода* в кислой и нейтральной среде присоединение кислорода осуществляется за счёт молекул воды и сопровождается образованием ионов водорода.
- *При недостатке кислорода* в *щелочной среде* присоединение кислорода происходит за счет гидроксид-ионов с образованием молекул воды.

Практическая часть:

Вариант 1

1. Определите степени окисления у каждого элемента в следующих соединениях:

Na₂SO₄, K₂SO₃, CH₄, FeCl₂, CaF₂, CCl₃, PCl₅, F₂O, HNO₂, Fe(NO₂)₂, H₃PO₄, RbOH, LiCl, HNO₃, SiH₄.

- 2. По названиям веществ составьте формулы бинарных соединений и укажите степени окисления каждого элемента:
 - 1. гидрид лития
 - 2. сульфид магния
 - 3. фосфид алюминия
 - 4. оксид натрия
 - 5. хлорид кальция
 - 6. оксид хрома (IV)
- 3. Составьте электронные уравнения, укажите процессы окисления и восстановления, окислитель и восстановитель в следующих сокращенных уравнениях ионных реакций:
 - a) $Fe + Cu^{2+} = Fe^{2+} + Cu$;
 - 6) $2Fe^{3+} + Hg = 2Fe^{2+} + Hg^{2+}$;
 - B) $Cu^{2+} + H_2 = Cu + 2H^+$;
 - Γ) $2A1 + 6H^{+} = 2A1^{3+} + 3H_{2}$.
- 4. Расставьте коэффициенты в схемах окислительно-восстановительных реакций, пользуясь методом электронного баланса:

$$Ca + HNO_3 = NH_4NO_3 + Ca(NO_3)_2 + H_2O$$

 $K_2S + KMnO_4 + H_2SO_4 = S + K_2SO_4 + MnSO_4 + H_2O$

5. Методом ионно-электронного баланса расставьте стехиометрические коэффициенты:

$$FeSO_4 + K_2Cr_2O_7 + H_2SO_4 = Cr_2(SO_4)_3 + K_2SO_4 + Fe_2(SO_4)_3 + H_2O_4 + H_2O_5 + H_2O$$

Вариант 2

1. Определите степени окисления у каждого элемента в следующих соединениях:

 $Fe(NO_3)_3$, $KClO_4$, PH_3 , Na_2S , SO_2 , LiH, O_3 , KCl, $KClO_3$, H_2CO_3 , $ZnBr_2$, $Al(NO_2)_3$, H_3PO_4 , HCl, BaO.

- 2. По названиям веществ составьте формулы бинарных соединений и укажите степени окисления каждого элемента:
 - 1. гидрид кальция
 - 2. сульфид бериллия
 - 3. фосфид хлора (V)
 - 4. оксид рубидия
 - 5. хлорид бария
 - 6. оксид хрома (III)
- 3. Составьте электронные уравнения, укажите процессы окисления и восстановления, окислитель и восстановитель в следующих сокращенных уравнениях ионных реакций:
 - a) $Zn+Cu^{2+}=Zn^{2+}+Cu$;
 - 6) $Mn^{+7} + N^{+3} = Mn^{+2} + N^{+5}$;
 - B) $Zn^0 + 2H^+ = Zn^{+2} + H_2^0$
 - Γ) $2Bi^{+3} + 3Sn^{+2} = 2Bi^{0} + 3Sn^{+4}$.
- 4. Расставьте коэффициенты в схемах окислительно-восстановительных реакций, пользуясь методом электронного баланса.

$$P + HNO_3 + H_2O = H_3PO_4 + NO$$

$$KMnO_4 + Na_2SO_3 + KOH = K_2MnO_4 + Na_2SO_4 + H_2O$$

5. Методом ионно - электронного баланса расставьте стехиометрические коэффициенты:

$$KMnO_4 + KI + H_2SO_4 = MnSO_4 + K_2SO_4 + I_2 + H_2O$$