
Pants 2.9: Alpha support for Java and
Scala, improvements for Docker and
Go, and more
We're pleased to announce [Pants 2.9.0](https://www.pantsbuild.org/v2.9/docs), the latest
release of Pants, the scalable and ergonomic build system.

To update, set `pants_version = "2.9.0"` in your `pants.toml`. See [upgrade
tips](https://www.pantsbuild.org/docs/upgrade-tips) for more information.

Alpha Support for Java and Scala
We’re very happy to announce that support for Java and Scala has reached alpha quality in the
`2.9.0` release!

Pants 1.x had a long history of support for Java and Scala, going back to when it was first
created at Twitter. In fact: they were the first supported languages! Consequently, (re-)adding
support for these popular JVM languages has been high on our list ever since [the 2.x
release](https://blog.pantsbuild.org/introducing-pants-v2/) in late 2020.

Improvements over Pants 1.x
In the last few years, we’ve learned a lot about how best to deal with more-slowly-compiling,
high level languages like Scala.

Dependency inference and per-file compilation

As described in our recent blog post, [dependency inference for Java and
Scala](https://blog.pantsbuild.org/automatically-unlocking-concurrent-builds-and-fine-grained-ca
ching-on-the-jvm-with-dependency-inference/) removes a ton of boilerplate.

But very fine-grained, always-accurate dependencies also enable per-file compilation, reducing
the number of files that Pants needs to feed to `scalac`, and allowing for automatic file-level
parallelization and the most accurate cache keys possible. From a correctness perspective, that
means that unlike tools which use [compilation libraries like Zinc](https://github.com/sbt/zinc)
(SBT, Bloop, Mill, optionally Bazel, and others) Pants `2.9.0` supports sandboxed, minimal
incremental Java and Scala compilation, while preventing the under-compilation bugs that have
historically troubled Scala developers.

For more information on how dependency inference works for the JVM, [check out that
post](https://blog.pantsbuild.org/automatically-unlocking-concurrent-builds-and-fine-grained-cac
hing-on-the-jvm-with-dependency-inference/)!

https://blog.pantsbuild.org/automatically-unlocking-concurrent-builds-and-fine-grained-caching-on-the-jvm-with-dependency-inference/
https://blog.pantsbuild.org/automatically-unlocking-concurrent-builds-and-fine-grained-caching-on-the-jvm-with-dependency-inference/
https://github.com/sbt/zinc
https://blog.pantsbuild.org/automatically-unlocking-concurrent-builds-and-fine-grained-caching-on-the-jvm-with-dependency-inference/
https://blog.pantsbuild.org/automatically-unlocking-concurrent-builds-and-fine-grained-caching-on-the-jvm-with-dependency-inference/

Multiple resolves of third party dependencies

Another significant improvement for the JVM over 1.x is that Pants `2.9` implements a
monorepo-friendly multiple-resolve/lockfile strategy for third party dependencies, allowing for
correctness, flexibility, _and_ performance.
Build tools for the JVM tend to either resolve dependencies globally (for an entire repository), or
locally (on a project-by-project basis). Global resolves (as in Bazel) remove flexibility, because
teams working within a repository cannot diverge from the single blessed versions of any library:
if they try, they are nearly guaranteed to encounter classpath incompatibilities. On the other
hand, local/per-project resolves (as in SBT, Gradle, Maven) within a monorepo allow for local
flexibility, but reduce the performance and compatibility of any particular build by executing one
unique resolve per project.

Rather than forcing global or per-project resolves, Pants `2.9` supports a unique hybrid
approach: third party resolves are named and first-class, and can be used on a target by target
basis. This allows a monorepo to operate with the minimum number of resolves required to
support their conflicting library versions, without necessarily going to the costly extreme of
per-project resolves.

Having the minimum number of resolves improves performance, but it doesn’t come with a
correctness cost! To ensure reproducible builds, Pants generates a lockfile per resolve, which is
then efficiently consumed to fetch the precise, fingerprinted dependencies of any particular file.

Trying it out
Although this is an alpha release, the features that are implemented so far are expected to give
teams enough to work with to validate using Pants with a JVM codebase:

●​ Scalatest, Junit
●​ scalafmt, google_java_format
●​ Scala Repl
●​ Protobuf code generation with ScalaPB
●​ Debugging support
●​ Scala compiler plugins
●​ Support for cycles between Java and Scala
●​ Multiple resolves with independent lockfiles
●​ Bootstraps a configured JVM using coursier

We’d love to help you try out Pants with your JVM codebase: you can start by checking out the
[initial documentation](https://www.pantsbuild.org/v2.9/docs/jvm-overview) and [example JVM
repository](https://github.com/pantsbuild/example-jvm). If you see anything missing that
prevents you from evaluating Pants for Java and Scala, please let us know by [opening a Github
issue](https://github.com/pantsbuild/pants/issues/new/choose), or [visiting
Slack](https://www.pantsbuild.org/v2.9/docs/community)!

https://www.pantsbuild.org/v2.9/docs/jvm-overview

Better visibility into runtime and cache hits for tests
Thanks to a great change from a new contributor, Pants `2.9` now renders test runtime and
cache status (whether a process ran, hit a cache, or was memoized in memory by `pantsd`) in
the test summary for all supported languages!

❯ ./pants test src/python/pants/util:
…
✓ src/python/pants/util/dirutil_test.py:tests succeeded in 1.21s (cached locally).
✓ src/python/pants/util/osutil_test.py:tests succeeded in 0.72s (memoized).
✓ src/python/pants/util/strutil_test.py:tests succeeded in 0.98s (cached remotely).

No more thinking to yourself: “Gee, that was even faster than usual! I wonder why?”

Improvements to Docker support
Among a number of bug fixes and documentation enhancements, here are the noteworthy
improvements to the Docker backend:

●​ Introduce a new `target_stage` field for `docker_image` as well as the
`[docker].build_target_stage` option.

●​ Add `instructions` field to `docker_image` to support generating the Dockerfile.
●​ Logs warning about the docker build context, and what files where referenced and not,

and possible renames to get more matches in case of docker build failure.
●​ New option for the `[docker]` scope, which allows passing additional options when

executing `docker run [OPTIONS] <image>`, in addition to the `--run-args` which are
passed to the image entrypoint.

●​ Add new `secrets` field to `docker_image`.
●​ Include `shell_source(s)` in `docker_image` build context.
●​ Support interpolating Docker build args into the `repository` field of `docker_image`

targets.
●​ Allow tailor to create `docker_image` targets for any files with “Dockerfile” in the file

name.
Check out the updated [`docker` documentation](https://www.pantsbuild.org/v2.9/docs/docker)
for more information!

Changes to Go project layouts
After [adding experimental support for Go](https://blog.pantsbuild.org/golang-support-pants-28/)
in Pants `2.8`, we decided that a few changes to how Go targets are laid out in BUILD files
would help to future proof the support.

To that end, in Pants `2.9`, each `go` package now needs its own `go_package` declaration in a
`BUILD` file. Thanks to dependency inference and `./pants tailor`, these BUILD files are very
simple, and rarely require adjustments. But when they do, they [follow the 1:1:1
principle](https://github.com/pantsbuild/pants/issues/13488): metadata about your code should
live near the code itself.

https://www.pantsbuild.org/v2.9/docs/docker
https://github.com/pantsbuild/pants/issues/13488

In particular, the changes to target layouts make it easier to use the new Go features in `2.9`.
`go_package` targets now support:

1.​ Setting a `test_timeout` for the package (in seconds), which is propagated down to the
Go test runner:

go_package(
 test_timeout=120,
)

2.​ Embedding `resource` files in a binary for use at runtime:

go_package(name='pkg', dependencies=[":resources"])
resources(
 name="resources",
 sources=["*.txt"],
)

3.​ Adding `files` to the working directory of your tests (i.e. `testdata`):

go_package(dependencies=[":testdata", "//:root"])
file(
 name="testdata",
 source="testdata/f.txt"
)

To update your `BUILD` files for the new layout in `2.9`, run `./pants tailor`. Thanks for your
patience, and all of your feedback on the new Go support! Please continue to let us know how it
can be most useful to you.

Thanks
Thanks to all the contributors to 2.9, including everyone who shared feedback on changes and
who tested release candidates!

Notes
●​ Tell the (hi)story of JVM support

○​ How v1 served the JVM community
■​ Discuss our relationship with the Scala community

○​ Problems with our v1 JVM support, and how v2 fixes them
●​ Highlighted features

○​ JVM Alpha
■​ Scalatest, Junit
■​ Scalafmt, google_java_format
■​ Scala Repl
■​ Debugging support
■​ Scala compiler plugins
■​ Support for cycles between Java and Scala
■​ Multiple resolves with independent lockfiles
■​ Bootstraps a JVM via coursier

○​ Duration and cache source for tests
○​ Docker improvements

■​ https://github.com/pantsbuild/pants/pull/13997
■​ https://github.com/pantsbuild/pants/pull/13953
■​ https://github.com/pantsbuild/pants/pull/13818
■​ https://github.com/pantsbuild/pants/pull/13830
■​ https://github.com/pantsbuild/pants/pull/13761
■​ https://github.com/pantsbuild/pants/pull/13721
■​ https://github.com/pantsbuild/pants/pull/13601
■​ https://github.com/pantsbuild/pants/pull/13386

○​ Go changes
■​ Move to 1:1:1:

●​ https://github.com/pantsbuild/pants/pull/13702
●​ https://github.com/pantsbuild/pants/pull/13681
●​ https://github.com/pantsbuild/pants/pull/13707

■​ https://github.com/pantsbuild/pants/pull/13781
■​ https://github.com/pantsbuild/pants/pull/13743

○​ Support for using `tailor` continuously in a repo
■​ https://github.com/pantsbuild/pants/pull/13432
■​ https://github.com/pantsbuild/pants/pull/13422
■​ https://github.com/pantsbuild/pants/pull/13420

○​ Performance improvements
■​ https://github.com/pantsbuild/pants/pull/13370
■​ https://github.com/pantsbuild/pants/pull/13559

https://github.com/pantsbuild/pants/pull/14002
https://github.com/pantsbuild/pants/pull/13997
https://github.com/pantsbuild/pants/pull/13953
https://github.com/pantsbuild/pants/pull/13818
https://github.com/pantsbuild/pants/pull/13830
https://github.com/pantsbuild/pants/pull/13761
https://github.com/pantsbuild/pants/pull/13721
https://github.com/pantsbuild/pants/pull/13601
https://github.com/pantsbuild/pants/pull/13386
https://github.com/pantsbuild/pants/pull/13702
https://github.com/pantsbuild/pants/pull/13681
https://github.com/pantsbuild/pants/pull/13707
https://github.com/pantsbuild/pants/pull/13781
https://github.com/pantsbuild/pants/pull/13743
https://github.com/pantsbuild/pants/pull/13432
https://github.com/pantsbuild/pants/pull/13422
https://github.com/pantsbuild/pants/pull/13420
https://github.com/pantsbuild/pants/pull/13370
https://github.com/pantsbuild/pants/pull/13559

■​ Performance improvements for test runs via subsetting improvements
●​ NB: Only the `hash` removal ended up being enabled by default,

but probably still significant.
●​ Future work, call to action

https://github.com/pantsbuild/pants/pull/13933

	Pants 2.9: Alpha support for Java and Scala, improvements for Docker and Go, and more
	Alpha Support for Java and Scala
	Improvements over Pants 1.x
	Dependency inference and per-file compilation
	Multiple resolves of third party dependencies

	Trying it out

	Better visibility into runtime and cache hits for tests
	Improvements to Docker support
	Changes to Go project layouts
	Thanks
	
	
	Notes

