
AET 339 Technical Art I: Project 3
Khel Bagdasaryants, Jaclyn Ngo, Nada Abu-Rayyan
Spring 2021
Link To Project

Project Details:

The studio is building a Wizard MOBA game and needs you to build out magical spell effects for
their initial character set. The effects needed are as follows (one wizard per team member).

Character 1: Winter Wizard
Effects: Snow Shield (shield ability) and Frozen Arrow (ranged melee)

Character 2: Poison Wizard
Effects: Poison Cloud (shield ability) and Sludge Shot (ranged AOE attack)

Character 3: Electric Wizard
Effects: Shocking Charge (shield ability) and Lightning Bolt (ranged melee)

Character 4: Charm Wizard
Effects: Captivating Smile (shield ability) and Love Is A Battlefield (ranged AOE attack)

Requirements:

●​ FX must have some variety in their use/not be the same every time you cast a spell.
●​ FX must be complementary in style but distinct between characters.
●​ Must include sound
●​ Demo scene must make it possible to cycle between characters and test their spells.

Characters and environments do not need to be interactive. Demo scene should be
simple to showcase the effects.

Assets Used:

-​ Fairy Magic Wand, by Robinhood76
https://freesound.org/people/Robinhood76/sounds/342432/

-​ Another Magic Wand Spell Tinkle, by Timbre
https://freesound.org/people/Timbre/sounds/221683/

-​ Short Kiss, by Vospi
https://freesound.org/people/Vospi/sounds/344209/

-​ Laser Gun Explosion, by Dpoggioli
https://freesound.org/people/Dpoggioli/sounds/213610/

-​ Magic Spell, by Kostas17
https://freesound.org/people/Kostas17/sounds/542825/

-​ Smoke Particle, by Kenney

https://ed1c24.itch.io/tech-art-project-3
https://freesound.org/people/Robinhood76/sounds/342432/
https://freesound.org/people/Timbre/sounds/221683/
https://freesound.org/people/Vospi/sounds/344209/
https://freesound.org/people/Dpoggioli/sounds/213610/
https://freesound.org/people/Kostas17/sounds/542825/

https://kenney.itch.io/kenney-game-assets-1
-​ Rain Particle, by GreenMask Games

https://i.ibb.co/qgfgynJ/rainDrop.png
-​ Sci-Fi Forcefield, by StormwaveAudio

https://freesound.org/people/StormwaveAudio/sounds/330629/
-​ Wind, by InspectorJ

https://freesound.org/people/InspectorJ/sounds/376415/
-​ Slime, by jtap97

https://freesound.org/people/jtap97/sounds/448889/

https://kenney.itch.io/kenney-game-assets-1
https://i.ibb.co/qgfgynJ/rainDrop.png
https://freesound.org/people/StormwaveAudio/sounds/330629/
https://freesound.org/people/InspectorJ/sounds/376415/
https://freesound.org/people/jtap97/sounds/448889/

Winter Wizard Assets (created in Clip Studio Paint)

Charm Wizard Assets (created in photoshop)

Poison Wizard Assets (Gathered from Kenney Assets and GreenMask Games):

Video showing functionality: https://www.youtube.com/watch?v=ydsebPIj82M

Analysis:
Based on the required features, a few questions were asked:

●​ How should the spells be activated?
●​ How should we swap out characters?
●​ How should the animation state for the spells function?
●​ How do we handle the special effects for each spell?
●​ How should the sound effects play once the spell activates?
●​ How do we make our spells juicy?

Outside of Unity, we can use Photoshop and a variety of other drawing tools to create
transparent art assets to use to make our spells in Unity.

Approach:
After research and testing particle systems, animator controller, and sprites/images, the
following approach was chosen:

●​ A script that activates the shield and attack spells on certain button press
●​ A script that changes the active character/scene
●​ An animator controller that animates a spell (shield, special symbols, etc)
●​ A particle system to create special effects for both the shield and attack spells
●​ Sound FX from freesound.org that triggers once a spell is activated.
●​ A canvas to add buttons to other wizards

Breakdown of Approach:

https://www.youtube.com/watch?v=ydsebPIj82M

​ Scripts functionality:

SkillController is a script that activates the sound effects and animation on keypress. Each spell

(shield and attack), needs at least three variables: a game object that has the animator

controller attached to it, a variable to contain the animator, and an audio source. In the start

function, get the animator component from the game object that has the attached animator

controller. Save it to a variable. We’ll use this in update. In update, use if statements to

determine when a certain key is pressed. If it’s pressed, play the audio source and play the

animation.

ButtonLoad is a script that just takes a string and load the respective scene according to the

string. The scenes have to be in the build settings in order for the scene to load.

​ Animator Controller functionality:

All the animators in Unity look something similar to this. We decided that in order to make our

spells consistent, we will animate the transparency to fade in/out the spells. Scale, position, and

rotation were also a couple of other factors we changed per spell. We also animated when the

particle systems should appear and disappear. Additional flairs were also added in the animator

such as multiple images for our spell and glow effects.

In the Animator tab, we have the animation states. Both our shield and attack states are

formatted the same way. In order to prevent the animation from playing when awake, an empty

state is set as default. A transition is created and connects to the animation state. In order to

move from empty state to animation state, a trigger (useShield or useAttack) is made. When the

conditions are met (in other words the trigger is activated), then empty state will transition to

animation state. Once the animation finishes playing, it will automatically go back to empty state

and awake for the key press again. Looping is also turned off.

​ Particle system breakdown:

We use Unity’s particle system along with custom 2D assets

to accomplish many of the special effects used in our spells.

For creating a 2D particle system, scroll down in the inspector

down to the renderer section and change the material to

“Sprites-Default” and then enable texture sheet animation.

Enabling texture sheet animation will allow 2D assets to be

chosen as the texture for the particle. Once our particles were

created and adjusted, they were linked up with the animator

to fade in and out upon spell activation. Each component that

makes up a particle can be adjusted from speed, color,

rotation, to emission rate. One of the most important

components to be changed is the shape section which is crucial for differentiating certain

effects. A sphere shape is good for particles that float around an object within a certain radius

such sparkles as around a shield whereas a cone with a small angle can allow particles to shoot

out like projectiles such as in the case of the Ice Wizard’s attack.

Canvas Functionality:

We used buttons to move from one wizard to another. Add a button and add the ButtonLoad

script to it. In the public variable Scene Name, type in the name of the scene character for

character. In OnClick(), add a functionality. Drag and drop the button object into the slot under

Runtime. To the right of Runtime, select the script ButtonLoad and function LoadScene. The

button should now load the scene specified in the string variable.

Sound FX breakdown:

All sound effects follow the same method. An empty game

object is created and the audio source component is added.

Then the audio is dropped into the AudioClip section. Loop

and Play on Awake are deselected to ensure that the audio

doesn’t play right away or continuously. Volume is also

adjusted as needed. These game objects are then dragged

and dropped into the public audio source variables for the

SkillController script to use.

