Pseudo-code for the JoystickXY module (a service that reads analog input form joystick)

hhkkhkhhhhhhhhhhhhhhhhhhhrhhhhhdhdhddhdhhrhhdhhrhhhdhhddddddhhrhhdhhhhhhhhdddhdrhrhhdrhrhhhdhdhdddddrrrrhrrrsx

Data private to the module: MyPriority, LastAD_Value[NUM_AD_CHANNELS]

#defines:
AD_CHANNEL (1<<11) | (1<<9) // Using Analong Port 11 and 9
NUM_AD_CHANNELS 2 // Using 2 Analog ports

InitJoystickXY

Takes a priority number, returns True.

Call ADC_ConfigAutoScan(AD_CHANNEL) to configure ADC_Scan
Post Event ES_Init to Joystick queue (this service)

End of InitJoystickXY

RunJoystickXY (implements the service that reads joystick xy values)
EventType field of ThisEvent will be one of: ES_INIT, ES_TIMEOUT
Returns ES_NO_EVENT

Based on the event received, choose one of the following blocks of code:
EventType of ThisEvent is ES_INIT
Setup a 20ms timer to scan AD value every 20ms
End ES_INIT block
EventType of ThisEvent is ES_TIMEOUT
Setup a 20ms timer to scan AD value every 20ms

Read AD values and store the values into LastAD_Value in this direction

ReadJOYSTICK LR = LastAD Value[1]; // Load the AD value in LR direction
If joystick has moved by user in LR direction

restart the IDLE timer

Set NewEvent.EventParam = ReadJOYSTICK LR;



Post ES_JOYSTICK_LR to PostList01
End if
ReadJOYSTICK LR = LastAD Value[0]; // Load the AD value in UD direction
If joystick has moved by user in UD direction
restart the IDLE timer
Set NewEvent.EventParam = ReadJOYSTICK_UD;
Post ES_JOYSTICK LR to PostList01
End if
End ES_TIMEOUT

Return ES_NO_EVENT
End of RunTargetLEDs

PostTargetLEDs & QueryTargetLEDs are not changed from the tempelate

LEDtoDecoderinputs
Takes the current LED index, returns nothing

Apply the decoder inputs to light the current LED passed as input

if the The passed input index has its 0 bit high
Set the decoder 0 bit to high
else

Set the decoder 0 bit to low

if the The passed input index has its 1 bit high
Set the decoder 1 bit to high
else

Set the decoder 1 bit to low

if the The passed input index has its 2 bit high



Set the decoder 2 bit to high
else

Set the decoder 2 bit to low
End

TurnOnNextTargetLED
Takes nothing, returns nothing
Chooses which LED to be lit according to a predefined

sequences of LEDs apply this to the decoder inputs

if Counter1 is less than the number of Target LEDs
Set LedtoBelLit according to the predefined sequence array and
the current indices (Counter1 and Counter2)
Increment counter 1
else
Reset Counter1 to zero
Call LEDtoDecoderlnputs(LedtoBeL.it)
End

Spotlight_Positioning_Check (event checker)
Takes nothing, returns bool

See if the current servo positions match with the current target

coordinate and post ES_ SPOT_REACHED or ES_ALL_SPOT_REACHED accordingly

Data private to this function: ReturnValue, EVENT_TO_POST

Initialize ReturnValue to false

Update the ServoLRPosition and ServoUDPosition from the values updated by PWM module

if LedtoBelLit is non zero (one LED is to be on)



if ServoLRPosition and ServoUDPosition carry values within bounds
predefined inside ServosTargetAngles for the different LED positions
Set ReturnValue to true
if the lit LED count is still less than the number of LEDs available
Post ES_SPOT_REACHED to EdMovSensModule and to SpotlightModule
else
Post ES_ALL _SPOTS_REACHED to EdMovSensModule and to SpotlightModule
Increment Counter2 to utilize a new sequence of LEDs if the player chooses to replay
return ReturnValue

End



