
 Lock-in Amplifier [Notes] 
 
 

What does it do? 
The lock-in amplifier is a device used to extract very weak signals from noisy measurements. 
By knowing the exact frequency of the signal, it can zero in on that specific part of the 
spectrum, effectively isolating and amplifying the signal despite the surrounding noise. 
 
In particular it’s more proper to think of the lock-in as a spectrum analyzer. This device 
stimulates a physical system (or Device Under Test DUT) with a periodic signal, the system 
responds with a periodic signal of its own + noise. The job of the lock-in is then to compute 
the Fourier Transform of this waveform and extract the first harmonic amplitude and phase. 
 



 

How does it do it? 
 
I’ve chosen to write 2 explanations here, both are in my opinion necessary to fully 
understand a lock-in however one is more suitable to understand the lock-in from a signal 
processing point of view, the other is a more proper explanation of it’s theory of operation but 
it’s a bit more in depth. 
 

The lock-in from a signal processing standpoint or The short explanation 
 
A Lock-in amplifier can be abstracted to just a couple of blocks: 
 

 
The stimulation signal called “reference” ( ) comes out of the lockin and stimulates a 𝑉

𝑟
(𝑡)

physical system, the physical system responds with an “input signal” ( ) that is fed into 𝑉
𝑠
(𝑡)

the lock-in. In the diagram above we can see that the circuit is duplicated save for a 90◦

phase shift, for now we’ll only evaluate the top half. There we can see that the signal is 
“mixed” with a reference signal. This process will be explained more in depth in the following 
section but for now we’ll believe that the mixer takes 2 signals and outputs a third. Below we 
can find the frequency space of the signals before and after the mixer: 



 
 
It takes signals  and  and outputs a signal with 2 components:  and 𝑓

𝑠𝑖𝑔
𝑓

𝑅𝐸𝐹
𝑓

𝑠𝑖𝑔𝑛
− 𝑓

𝑅𝐸𝐹

. However this case assumes that the input signal coming from the experiment is 𝑓
𝑠𝑖𝑔𝑛

+ 𝑓
𝑅𝐸𝐹

purely sinusoidal (i.e. defined solely by a peak at ), this is not the real case, the 𝑓
𝑠𝑖𝑔

frequency spectra of our signal is in fact plagued with noise at all frequencies. However the 
Fourier Transform tells us that this spectrum of noise + signal can be decomposed into many 
different peaks, each at a different . Knowing this we can see that the noise spectrum will 𝑓

𝑠𝑖𝑔

be shifted by the mixer but our signal will be shifted in a special way: In the case where the 
signal is a direct response of the stimulation at  it’s spectrum component after the mixer 𝑓

𝑅𝐸𝐹

will be shifted to  and  . That is, mixing our noise + signal spectrum with allows 0𝐻𝑧 2 𝑓
𝑅𝐸𝐹

𝑓
𝑅𝐸𝐹

us to separate the signal from the noise by shifting out signal peak to DC and everything 
else into AC. Knowing this we may separate both by applying a low pass filter to the mixer 
output which will preserve only the DC component, this component is the output of the 
lock-in and it is proportional to the physical signal amplitude. 
 



 
 
However the signal experiences a delay when traveling through our system, this delay can 
be also understood as a phase when dealing with frequencies and some phases may 
collapse the output of the lockin to 0, for reasons that will be explained in the next section, 
we can combat this by computing this process twice with a duplicated circuit but with a signal 

delayed by . 90◦

 
We may do one final leap of faith to better understand the role of this instrument in our signal 
chain.  



 
Initially we described the mixers from the point of view of the lock-ins output, that is the 
whole spectrum is shifted by  bringing our signal at  into DC, however it’s − 𝑓

𝑅𝐸𝐹
𝑓

𝑠𝑖𝑔
= 𝑓

𝑅𝐸𝐹

perhaps more useful to think from the reference frame of the input and interpret the mixers 
as frequency shifting our Low pass filter from DC into  (see image d above) Our low 𝑓

𝑅𝐸𝐹

pass is now no longer allowing to pass only spectra between  and , it is 0𝐻𝑧 𝑓
𝑐𝑢𝑡𝑜𝑓𝑓

= 1
2 π τ

now a band pass filter centered in  and allowing to pass frequencies at either side by 𝑓
𝑅𝐸𝐹

. This reduces the whole complicated signal chain inside the lockin into one single ± 𝑓
𝑐𝑢𝑡𝑜𝑓𝑓

understandable block, a really fine band pass filter. 
 
Note: While it’s fair to understand the lockin as a bandpass at the input signal we still have 
to take into account the frequency shift happening at the output. For example let’s take a 
lock-in configured to , low pass cutoff frequency set to  (or time 𝑓

𝑅𝐸𝐹
= 1𝐾𝐻𝑧 𝑓

𝑐𝑢𝑡𝑜𝑓𝑓
= 1𝐻𝑧

constant ) this means from the input point of view we can expect to τ = 1
2 π 1𝐻𝑧 = 159 𝑚𝑠

take only the frequency components from  to  but we should not expect an 999 1001 𝐻𝑧
output from  to  like we would in a bandpass, we should expect to see an output 999 1001 𝐻𝑧
from  to , the amplitude characteristics of the spectra however will indeed be the 𝐷𝐶 1 𝐻𝑧
same. 
 



The lock-ins theory of operation or The longer explanation: 
 
The following is the block diagram for the SR830 lock in amplifier, it may seem daunting at 
first but through the following explanation we will come to see how the signal processing 
that’s taking place is exactly a Fourier Transform computation. 
 

 
 
Lock in amplifiers in essence compute the Fourier Transform for a certain harmonic of .  𝑓

𝑅𝐸𝐹

To demonstrate how let’s look at the formula for the FT: 
 

 𝑓
^

=
−∞

∞

∫ 𝑓(𝑡) 𝑒−𝑖2π𝑓𝑡𝑑𝑡

 
If we expand the complex exponential into cartesian coordinates the picture is made more 
clear 
 

 𝑓
^

=
−∞

∞

∫ 𝑓(𝑡)[𝑐𝑜𝑠(2π𝑓𝑡) − 𝑖 𝑠𝑖𝑛(2π𝑓𝑡)]𝑑𝑡

 
We may interpret the FT as a measure of similarity, the FT amplitude plot represents how 
“similar” our function  is to a certain function, as a first approximation we’ll compute the 𝑓(𝑡)
similarity to functions of type:  and later . 𝑐𝑜𝑠(2π𝑓𝑡) − 𝑖 𝑠𝑖𝑛(2π𝑓𝑡)



 
The FT formula above is taking a couple of computation steps that a lock-in will try to take 
too, first it’s evaluating how similar our signal  is to a cosine function of frequency  by 𝑓(𝑡) 𝑓
multiplying both of them, to understand how this is a measure of similarity let’s start with an 
example. take our signal to be another cosine of an arbitrary frequency:  
 

  𝑓(𝑡) = 𝑉
𝑠𝑖𝑔

𝑐𝑜𝑠(2 π 𝑓
𝑠𝑖𝑔

 𝑡 + θ)

 
And instead of computing the full spectrum of the FT let’s evaluate only the similarity to a 
cosine function with a particular frequency : 𝑓

𝑅𝐸𝐹

 
 𝑉

𝑅𝐸𝐹
(𝑡) = 𝑐𝑜𝑠(2π𝑓

𝑅𝐸𝐹
𝑡)

 
For which after multiplication we’ll get: 
 

 𝑓(𝑡)𝑐𝑜𝑠(2π𝑓
𝑅𝐸𝐹

𝑡) = 1
2 𝑉

𝑠𝑖𝑔
[𝑐𝑜𝑠(2π𝑡[𝑓

𝑠𝑖𝑔
+ 𝑓

𝑅𝐸𝐹
] + θ) − 𝑐𝑜𝑠(2π𝑡[𝑓

𝑠𝑖𝑔
− 𝑓

𝑅𝐸𝐹
] + θ)]

 
This step is called the “demodulation” and its represented by a multiplication sign or a 
“mixer” in the block diagram.  
 
As explained on the previous section after multiplying 2 signals we get an output signal with 
2 components in the frequency space, one at  and another at . 𝑓 = 𝑓

𝑠𝑖𝑔
+ 𝑓

𝑅𝐸𝐹
𝑓 = 𝑓

𝑠𝑖𝑔
− 𝑓

𝑅𝐸𝐹

It is now clear that in the special case where   we get a signal centered in  𝑓
𝑠𝑖𝑔

= 𝑓
𝑅𝐸𝐹

0𝐻𝑧

plus another at . 2 𝑓
𝑠𝑖𝑔

 
This is the main principle on how both Fourier Transforms and Lock-in Amplifiers “evaluate 
similarity” of an input signal to a given frequency: After demodulation the only signal with a 
DC component will be that where  and thus all we have left to do is eliminate all 𝑓

𝑠𝑖𝑔
= 𝑓

𝑅𝐸𝐹

signals that do not have a DC component, to do so we take the integral of the output since 
any periodic function that does not have a DC component will average to 0 and it’s integral 
from  to  will be 0 as well. This is done though low pass filtering the output of our − ∞ ∞
mixer, it is perhaps not a well known property of low pass filters but any frequency that is 
well above their cutoff frequency will be integrated at the output.  
 
(Minor pet peeve: This step is sometimes described in the literature as the lockin taking the 
average of the mixer output but that assertment is mostly incorrect since an average does 
not have the same frequency response as an integration/low-pass, it’s also inaccurate when 
comparing with the formula of a Fourier Transform) 



 
a)​ Input mixer: Special case where  𝑓

𝑠𝑖𝑔
= 𝑓

𝑅𝐸𝐹

b)​ Output mixer: Special case shows DC and AC component 
c) Input mixer: Every other case, none of those show a DC component 

d) Output mixer: Every other case will show only an AC component 
 
We have now explained how this mathematical/hardware tool is able to evaluate if a signal is 
the same frequency as another known frequency , we should now clarify that the signals 𝑓

𝑅𝐸𝐹

we plan on measuring carry all sorts of components but the Fourier Transform guarantees 
that only those that correspond to the reference signal will survive. 
 
Of course we have yet to answer why perform this computation twice for a cosine and a 
sine. This is because our signal may have a phase that is different to the phase of our 
cosine:  , and there are phases for which the multiplication of 𝑓(𝑡) = 𝑉

𝑠𝑖𝑔
𝑐𝑜𝑠(2 π 𝑓

𝑠𝑖𝑔
 𝑡 + θ)

both cosines is 0 or anywhere in between, in fact if you do the math the surviving term after 
the integral is actually: 
 

 𝑓
^

= 1
2 𝑉

𝑠𝑖𝑔
𝑉

𝑟𝑒𝑓
𝑐𝑜𝑠(θ)

 
To solve this dependency on  we may make use of the fact that the sine is “orthogonal” to θ
the cosine, that is it is impossible for a certain phase delay to simultaneously collapse the 
multiplication and integral to 0 for both the sine and the cosine. This is the reason why we 
see 2 parallel branches in the block diagram, one computes the cosine part of the formula 
and the other delays the reference by  to compute the sine part of the equation. θ = π

2



 
Therefore we end up with 2 outputs, X and Y in the block diagram, however we may now 
come back to the very first step we took after laying the formula for the FT where we 
expanded the complex exponential into 2 cartesian terms and realize we can make use of 
the complex polar coordinates and transform our outputs into a more useful representation 
where: 
 

 𝑅 = 𝑋2 + 𝑌2

 θ = 𝑎𝑡𝑎𝑛2(𝑌/𝑋)
 

Now R properly represents the correct value of our first harmonic in the Fourier Transform 
without dependencies on the phase delay and  represents the delay between the reference θ
signal and the received signal.  
 
One final clarification is the formula for the FT integrates time from  to  but this is − ∞ ∞
obviously impossible, we should expect this because the outputs of a proper FT are delta 
functions of infinite height centered at the frequencies present in our spectra. Something that 
we’ll never see when integrating for finite periods of time. Instead we can modify the FT 
formula to account for the finite integration time: 
 

 𝑉
𝑜𝑢𝑡

(𝑡) = 1
𝑇

𝑡−𝑇

𝑇

∫ 𝑓(𝑠) 𝑒
−𝑖2π𝑓

𝑅𝐸𝐹
𝑠
𝑑𝑠

 
This integration time is set by the real life characteristic of our low pass filter, our low pass 
filter has a time constant (settling time) that is inversely related to frequency: 
 

 τ = 1
2 π 𝑓

𝑐𝑢𝑡𝑜𝑓𝑓

 
Thus we arrive at our first practical constraint, if we want to reject more noise we have to 
integrate for longer periods of time (i.e. lower our cutoff and reject more noise), this should 
make sense since it approximates our measurement to the ideal definition of a FT. 

 



How to use one 
TO DO 
 

How to set up the low pass filter? 
 
The following is the frequency, phase and step response of a cascade of  filters (commonly 𝑛
the amount of filter stages is specified in the lock-in panel not by  but by the slope of it’s 𝑛
attenuation: ), all of 𝑛 = 1→ 6𝑑𝐵/𝑜𝑐𝑡,  𝑛 = 2→12𝑑𝐵/𝑜𝑐𝑡,  𝑛 = 3→18𝑑𝐵/𝑜𝑐𝑡,  𝑛 = 4→24𝑑𝐵/𝑜𝑐𝑡
them share the same time constant  which is the case for a lock-in amplifier, a couple things τ
to note is how the settling time at the step response delays, how the cutoff frequency 
(strangely imo, will have to check) changes too. (Note: The phase should be related to  𝑛
however I’m not seeing that, I guess the lock-in corrects for it). 
 

 



How to setup the SRS860’s Gain: 
 
Careful, in the SR860 the actual Gain that may affect the actual singal to noise ratio for the 
measurement is controlled by “Input Range”, “Sensitivity” is more akin to an artificial zoom 
into the digitized waveform that does nothing to the measured value. 
 
See the following block diagram for the SR860, looks complicated but just focus on the gray 
area, those are the processes that are happening in the digital realm, that’s where you’ll find 
the Sensitivity control, now, everything outside that is analog and at the very beginning of the 
signal capture you’ll see the input range control that set’s up the analog Gain. 
 

 
To put it simply and into the perspective of an optics scientist, imagine the lockin as a digital 
camera, the focusing lens would be an analogy for the Input Range, allowing you to capture 
a crisper image, while the Sensitivity would be more akin to zooming into the digital image 
after taking the picture. The focus will allow you to capture more relevant information while 
the digital zoom adds nothing of value to the signal. 
 
My thinking is the sensitivity set up is there to allow the user to capture better data directly 
from the output BNCs (Ch 1, Ch 2…), if you are gonna place an oscilloscope there it does 
pay to artificially raise that signal. But we don’t care about that since we are capturing the 
digitized signal through RS-232. 



 

How to connect the SRS860 to a computer through Ethernet: 
 
A ChatGPT guide:​
​
1. Connect the Devices 
Use an Ethernet cable to connect your PC directly to the lock-in amplifier. 
Ensure both devices are powered on and ready. 
 
2. Configure the Lock-In Amplifier 
On the lock-in amplifier’s settings screen by pressing and holding Calc System: 
IP Address: Set to 192.168.0.4. 
Subnet Mask: Set to 255.255.255.0. 
Default Gateway: Leave blank or set to 0.0.0.0. 
Save and apply the changes. 
 
3. Configure Your PC’s Static IP Address 
Open Network Connections by pressing Win + R, typing ncpa.cpl, and pressing Enter. 
Right-click your Ethernet Adapter and select Properties. 
In the list, select Internet Protocol Version 4 (TCP/IPv4) and click Properties. 
 
Set the following: 
 
IP Address: 192.168.0.5 (ensure the last digit differs from the lock-in amplifier's IP). 
Subnet Mask: 255.255.255.0. 
Default Gateway: Leave blank or set to 0.0.0.0. 
Preferred DNS Server: Leave blank or use 8.8.8.8 (optional). 
Click OK and close all windows. 
 
4. Verify the Connection 
Open Command Prompt by pressing Win + R and typing cmd, press Enter. 
Test the connection by pinging the lock-in amplifier typing: 
ping 192.168.0.4 
If you see replies, the connection is working. 
 
5. Test with Python notebook 
 
 
 

Questions: 
1)​ What does the output of a lock-in mean when I chop a DC signal? 

 



Let's say I point a continuous source of light like a laser into a photodiode, this 
photodiode should generate a DC current but it may be too weak to measure so I 
employ a lockin amplifier and a chopper, the chopper, in essence, modulates this DC 
source into a square wave by alternatively blocking the light path at a regular interval, 
the frequency from the chopper is fed into the lockin as a reference. This is a pretty 
standard way of measuring optical quantities. 
 
However there is something about this measurement that irks me and it goes as 
follows: If the light is chopped into a square wave then the DC current I wanted to 
measure initially will be chopped into a square wave as well, distributing the "energy" 
of the signal among all of the many harmonics a square is made of, if I then use the 
lockin to measure the amplitude of the first harmonic the amplitude of this harmonic 
is cannot in my mind be the same as the DC current level I was trying to measure in 
the first place, right? It might be proportional but not an absolute measurement right? 
 
Answer?: I believe what should be done here is expanding the square wave into a 
Fourier Series (being careful to setting an offset such that the light power doesn’t go 
negative ofc) then finding out the relationship between the peak value of the square 
wave (which was the DC value before chopping) and the first coefficient in the series 
which I think correlates to the amplitude of it’s peak. (not really sure you can use 
fourier transforms and series interchangeably like that tho) 
 
However we won’t be measuring DC values which leads me to the next question: 
 

2)​ What kind of waveform are we trying to measure? (taking chopping pump probe 
delays and TGFWM into account).  
 
Answer?: Let’s say that Cris wants to capture the evolution of a signal over time, for 
example the decay of signal power as the sample’s material relaxes. This evolution 
will be a modulation of amplitude  in the reference signal: 𝑚(𝑡)
 

 𝑠(𝑡) = 𝑚(𝑡) 𝑉
𝑠
 𝑐𝑜𝑠(𝑤

𝑅𝐸𝐹
 𝑡 + ϕ)

If we understand a lock in system as a bandpass centered around  with 𝑤
𝑅𝐸𝐹

bandwidth equal to  then we’ll see that the temporal evolution of the signals 2 𝑓
𝑐𝑢𝑡𝑜𝑓𝑓

amplitude will be captured only if it’s within the vicinity of , that is if the 𝑓
𝑅𝐸𝐹

± 𝑓
𝑐𝑢𝑡𝑜𝑓𝑓

amplitude modulation signal  “survives” the low pass filtering. This question then 𝑚(𝑡)
doesn’t make sense for a pump probe experiment since the pump probe method 
exists solely to study super fast phenomena, unless we use a super high  in the 𝑓

𝑅𝐸𝐹

order of the phenomena we try to examine. 
 
Which leads me to believe that the signal we are going to capture is the super fast 
signal we want to study integrated from a certain time step, set by the delay line, up 
until it’s extinguished and I doubt that this period is longer than the chopper time step 
so I’m guessing we’ll have many pulses of laser in between each “chop” and then no 
pulses when blocking the laser. This all feels like a hard problem to extract an 
absolute measurement but it probably works as a relative measurement. 



 
I think I understand why we chop one out of 2 pulses. The way I understand it 
chopping will give us a probe signal after pumping followed by an unpumped probe. 
This gives a pulse train that has some envelope at the chopping frequency (half of 
the laser trigger). The higher the effect of pumping the bigger the difference between 
pump and umpumped and thus the bigger the envelope and the bigger the 
sub-harmonic. If on the contrary pumping served no purpose we would all pulses 
would look the same and there would be no envelope so we would find nothing but 
noise when evaluating the first subharmonic frequency. 
 

References 
●​ All of the papers and books in the parent folder at this Google Drive 
●​ TSP SR830 [video] 
●​ TSP lock-in demonstration [video] 
●​ 3B1B Fourier Transform [video] 

 
TO DO: Watch these: 
 
https://www.youtube.com/watch?v=Yqs-4TKGjjQ&t=2s&ab_channel=DallinDurfee 
https://www.youtube.com/watch?v=kNnc-lDHtrM&t=19s 
https://www.youtube.com/@analogwings/videos 
https://www.youtube.com/watch?v=h0_qrLpeT3k&ab_channel=snarayan007 
 
 

https://www.youtube.com/watch?v=figDqnsQD88&ab_channel=TheSignalPath
https://www.youtube.com/watch?v=rzzliN_vTKs
https://www.youtube.com/watch?v=spUNpyF58BY&t=477s&ab_channel=3Blue1Brown
https://www.youtube.com/watch?v=Yqs-4TKGjjQ&t=2s&ab_channel=DallinDurfee
https://www.youtube.com/watch?v=kNnc-lDHtrM&t=19s
https://www.youtube.com/@analogwings/videos
https://www.youtube.com/watch?v=h0_qrLpeT3k&ab_channel=snarayan007
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