Sketch Composer

Group Neural Picasso (Jiahao Liu , Zheyuan Zhou , Yun Li)

1. Introduction

We study the sketch generating problem. There has been a big body of literature on this topic, among
which SketchRNN ([1] Ha and Eck, 2017) is most relevant to our work. SketchRNN proposed a recurrent
neural network (RNN) model to construct sketches of common objects. The model was trained on a
dataset of human-drawn sketches of different classes (e.g. apples, bicycles, etc.). In their paper, a sketch
was represented as a sequence of points, and the authors applied a seq2seq VAE architecture to train the
model from end to end. However, empirically, RNNs or even LSTMs cannot perfectly handle extremely
long sequences, while human-drawn sketches often contain more than hundreds of points. This poses
difficulty in the training process. Moreover, their model failed to reflect the compositionality of human
sketches. When humans draw, they do not visualize an object as a sequence of points but instead as
several composition parts. This human thinking process is summarized by the theory of “chunking” in
behavioral psychology. The theory states that individuals process pieces of information set separately, and
the pieces are bound together into a meaningful whole. Therefore, in order to overcome the two
drawbacks discussed, we propose to decompose sketches into strokes (usually no longer than 20 points),
and then generate sketches by composing these strokes.

2. Methodology

2.1 Data

The dataset we use is the Quick Draw dataset ([6]), which is a dataset of vector drawings obtained from
Quick, Draw! ([7]), an online game where the players are asked to draw objects belonging to a particular
object class in less than 20 seconds. The total dataset contains 50 million drawings across 345 classes.
Each class of Quick Draw contains 70K training samples, 2.5K validation samples, and 2.5K test samples.

Each sketch in the dataset is represented as a sequence of strokes, and each stroke is represented as a
sequence of two-dimensional points. The format of the drawing array is as the following:

mailto:jiahao_liu@brown.edu
mailto:zheyuan_zhou@brown.edu
mailto:yun_li@brown.edu

[

[// First stroke
[x0, x1, x2, X3, ..
[ye, y1, y2, y3, ...1,
[to, t1, t2, t3,

1,

[// Second stroke
[x0, x1, x2, x3, ...],
[yo, y1, y2, y3, ...1,
[to, t1, t2, t3, ...]

]I

«+« // Additional strokes

FIGURE 1. Format of a Drawing Array in Dataset

The data is preprocessed by removing the strokes whose length is longer than 30 or shorter than 3. We
also remove the sketches whose number of strokes is larger than 10.

2.2 Model

Our system can be broadly divided into two parts. First, an autoencoder learns the representation for
individual strokes by minimizing the reconstruction loss. The learned latent representation can then be
used for clustering and labeling these strokes. A sketch that is originally represented as a sequence of
points will be transformed into a list of stroke labels. Then an LSTM-based variational autoencoder model
(named Stroke Composer) learns to “compose” the stroke labels generated in the previous step.
Additionally, a feed-forward Neural Network (named StratNN) is trained to predict the start point for each
stroke. The model architecture is shown below, and we will elaborate on these parts in the following
sections.

o — Stroke Composer

clustered- s(mke -type seq stroke- type position seq

.ed Sampled
i \ Sketch Data: B La‘entv“‘m T
| >
Slralgh(Line RNN / RNN slralgh(Line, position
Straight Line Encoder Decoder Straight Line, position
- \ / e
Oulfiul a P
“ A

Fully Connected Network

X Position
‘Q % Y Position
/4 .
b ; StartNN

FIGURE 2. Model Architecture Overview

KMeans
StrokeRNN iMeansy

Input

RNN RNN
| Encoder | —> —»> | Decoder| —»

\ Latent Vector

2.2.1 Learning Stroke Representation

To learn the representation of strokes, we train an autoencoder (StrokeRNN) to learn to reconstruct the
strokes. A stroke is originally formatted as a sequence of points, therefore we use LSTM as the encoder
and the decoder. The autoencoder is trained by minimizing the Mean Square Error between inputs and
outputs. The reconstruction loss function is shown below. Here N refers to the number of batches, L
refers to the length of the stroke, y represents the predicted relative position, and y-hat represents the

ground truth.
1 N L
P= x50l il
J %

Besides that, additional feed-forward deep networks are trained to predict the absolute start point of the
stroke (StartNN). We formulate it as a regression problem and train the neural network by minimizing the
Mean Square Error. Here s refers to the predicted starting point and s-hat represents the ground truth.

1 N
L=+ Z Isi — $ll®

After training the autoencoder, we take the latent vector of the input stroke sequence as its representation.
Then we apply the K-Means algorithm to cluster the strokes. However, the latent vector is of high
dimension, while K-Means fail in such a situation. Therefore, we pass the latent vectors into PCA to
reduce the dimension to 16 and then cluster the latent vectors. We use “CategoryName ClusterIndex” to
label the strokes, and thereby transform the sketch data into a sequence of stroke labels. For example, a
sketch can be represented as [“apple 17, “apple 37].

2.2.2 Sketch Composer

The Sketch Composer learns to predict the next stroke label based on the current input and the previous
steps. Specifically, we use a variational Seq2Seq to learn the sequential data. Both the encoder and the
decoder are LSTMs, and the network is trained by simultaneously minimizing the reconstruction loss and
KL-divergence. Since the LSTM predicts categorical labels, we select Cross-Entropy Loss as the
reconstruct loss function. The loss function is shown below:

Li(0, 9) = —E.vgy(zlz) log ps(zi | 2)] + KL(go(2 | z:)|[p(2))

3. Challenges

One challenge is to come up with the architecture of the models. In the beginning, we only had the idea
that the original paper (SketchRNN) had several weaknesses, but we did not know how to solve these
problems. We had several brainstorms before establishing the current scheme. Another challenge we
encountered in our project was modeling up the VAE for the Sketch Composer network. The LSTM
encoder has two sets of final states as output - the hidden state and the cell state. We were not sure how
these two states should be fed into the VAE and then passed on to the decoder LSTM. After rounds of trial
and error, we ended up passing only the cell state from the encoder LSTM to the VAE (and then the

decoder LSTM). We initialize the hidden state in the decoder LSTM with zeros. We find this structure to
give the best reconstructing results. Since the encoder output of the cell state captures an aggregation of
data from all previous time-steps that have been processed, whereas the hidden state captures only the
characterization of the last time-step’s data, we think using only the cell state would be fine for our

purpose.

4. Results

We show some generated sketch samples in the following figure. Our model can generate human
identifiable results.

Apple ‘ ‘ | '
Blueberry: & N 1 ;l \
Airplane

Angel

Bowtie 7 | .“: |

FIGURE 3. Sketch Composer Final Results for Different Categories

We also show the loss for different categories of different epochs. Table 1 shows the reconstruction loss of
the StrokeRNN model. Table 2 shows the sum of reconstruction loss and KL divergence of the Stroke

Composer model. Table 3 shows the mean square error of the StartNN model.

Bowtie Angel Airplane Blueberry Ant Basket Bed Bird

Epoch 0 704.68 362.9 671.63 339.82 259.5 731.83 997.08 347.31
Epoch 500 37.64 13.63 37.9 15.75 24.22 34.22 64.38 13.85
Epoch 800 34.25 13.45 36.71 15.73 2547 30.85 47.05 11.38

TABLE 1. StrokeRNN Reconstruction Loss for Different Categories on Different Epochs

Bowtie Angel Airplane Blueberry Ant Basket Bed Bird

Epoch 0 1.39 1.41 1.42 1.45 1.45 1.45 1.46 1.49
Epoch 500 0.16 0.24 0.2 0.24 0.22 0.21 0.22 0.23
Epoch 800 0.18 0.22 0.19 0.22 0.21 0.24 0.20 0.23

TABLE 2. Stroke Composer CE and KL Loss for Different Categories on Different Epochs

Bowtie Angel Airplane Blueberry Ant Basket Bed Bird

Epoch 0 15178.34 8490.41 21040.8 5250.58 40296.33 5981.5 8692.87 9356.87
Epoch 50 1595.27 1722.58 2219.32 4429.05 3170.22 1373.44 2565.85 2565.81
Epoch 100 1340.86 1625.07 1691.57 3610.42 3147.34 1322.1 2116.45 2425.45

TABLE 3. StartNN Mean Square Error Loss for Different Categories on Different Epochs

In the following figure, we demonstrate a stroke cluster (in the apple category) given by K-Means on
different StrokeRNN training epochs. We can see the model gradually learns to optimize the hidden
representation for strokes, and thus the K-Means algorithm can easily cluster these strokes based on their
semantics. The following figure shows the “apple body” cluster.

(10 epochs) (100 epochs) (500 epochs)

FIGURE 4. Stroke Clustering of “Apple Body” on Different Epochs

5. Reflection and Discussion

e (Q: How do you feel your project ultimately turned out? How did you do relative to your
base/target/stretch goals?

o A: We are satisfied with our final result, and we think we have achieved our basic goals.

e (Q: Did your model work out the way you expected it to?

o A: Yes. Our model is able to compose the strokes into sketches.

e (Q: How did your approach change over time? What kind of pivots did you make, if any?

o A: We first think of composing the strokes into sketches by using several parallel VAEs.
However, we realize it’s important to “give names” to (or say discretize) the strokes and
apply an LSTM VAE to learn to compose these discrete labels.

e (Q: Would you have done differently if you could do your project over again?

o A: We would carefully design the data processing code. We would index each stroke data
in a table (just like an entry in the database) which would make the future training
process much easier.

e (Q: What do you think you can further improve on if you had more time?

o A: Stroke positions are related to each other but in our model, we ignored this point. If we

had more time, we would train a Graph Neural Network to learn such relationships.
e (: What are your biggest takeaways from this project/what did you learn?

o A: We learn that we need to carefully design the data processing API to support the

different needs when exploring different deep learning architectures.

6. Reference

[1] Ha, D., & Eck, D. (2017). A neural representation of sketch drawings. arXiv preprint
arXiv:1704.03477.

[2] Ge, S., Goswami, V., Zitnick, C. L., & Parikh, D. (2020). Creative sketch generation. arXiv preprint
arXiv:2011.10039.

[3] Kingma, D. P., & Welling, M. (2013). Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114.

[4] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8),
1735-1780.

[5] Baggio, G., Van Lambalgen, M., & Hagoort, P. (2012). The processing consequences of
compositionality. In The Oxford handbook of compositionality (pp. 655-672). Oxford University Press.
[6] Quick Draw Dataset, available at https://github.com/googlecreativelab/quickdraw-dataset.

[7] Quick, Draw!, available at https://quickdraw.withgoogle.com/.

https://github.com/googlecreativelab/quickdraw-dataset

	Sketch Composer
	1. Introduction
	2. Methodology
	2.1 Data
	The data is preprocessed by removing the strokes whose length is longer than 30 or shorter than 3. We also remove the sketches whose number of strokes is larger than 10.
	2.2 Model
	2.2.1 Learning Stroke Representation
	2.2.2 Sketch Composer

	3. Challenges
	4. Results
	5. Reflection and Discussion
	6. Reference

