black art of manipulating numbers
TRIG
fund #1 - triangle angles add up to 180
fund #2 - right triangles are called "special”
sin th = opposite/hypotenuse
cos th = adjacent/hypotenuse
tan th = opposite/adjacent

assume circle with radius 1 (unit circle)
angle at center, then sin angle =y, cos angle = x

sin 90 = 1 = pi/2
cos 90 =0

sin0=0
cos0=1

sin 180 =0
cos 180 = -1

application: Projector throw

ratio of distance to image width

ex: T = 2:1 from 2 meters image width is 1
tan th/2 = 1/2t

from throw distance

th = 2*arctan(1/2*throw)

VECTORS
vector == offset
vector notation

-> -> >

V = (10,5) = 10i + 5 = Vxi+Vyj+Vzk

magnitude = sqrt(x*x+y*y)
Vector arithmetic is component-wise addition is commutative
To visualize = draw vectors running tip to tail

Vector subtraction is not commutative
To visualize = put both tails at zero and draw vector between tips

Vector-scalar math
can't add



multiply is scaling, i.e. (10,5)x2 = (10,5)+(10,5)

Vector multiplication is mathematically undefined
Vector libraries perform component-wise multiplication

Vector multiplication is possible through dot and cross PRODUCT

DOT PRODUCT

Dot = (x,y) . (x0,y0) = mag(v0)*mag(v1)*cos theta (theta is angle between) =
(xOx1)+(yOy1)+(z0z1)

dot product is "shadow" of a vector is a scalar

normalizing a vector = make magnitude 1
sqri(vx*vx+vy*vy)/(vX*vx+vy*vy);

reflection

vector reflected off normal n
take tangent and normal
tangent

CROSS PRODUCT

cross = v0 X v1 = mag(v0)*mag(v1)*sin theta

dot product is shadow (scalar), cross product is vector of rotation, that is what is the
vector you rotate v0 around to get v1

getting poly strips from a vector vO defined by p1 and p2
need to get perpendicular vectors v1 and v2

p2-p1 gives us direction vector (p0)

we need an up vector up = (0,0,1)

p0 X up gives us p1
multiply p1.normalized * desired width(w)/2 = offset vector

p1+offset and p1-offset gives us v1
p2+offset and p2-offset gives us v2

optimization tip for finding contour direction
put neighboring vectors tail to tail
take dots
check cross only if dot meets thresh

finding “hills” in 3d
cross dot up



MATRICES and XFORMS
Matrices == denote frame of reference for xform
Matrix == xform applied to axes
Matrix*Vector number of columns in matrix must match number of elements in vector
Matrix*Vector = Matrix

Generally use 4x4

identity matrix:

[100]=x axis
[010] =y axis
[00 1] =z axis

using identity matrix

example camera look

camera o, target t

direction vector dv = (t-0).norm
world up vector wup = (0,0,1)
right vector rv = (d X wup).norm

object up vectorov = (d Xr)

look matrix = [rv 0 0 0]
[0 ov 0 0]
[0 0 dv 0]

[ox oy 0z 1]

Wow...all this shit finally makes sense, holy crap. Thanks, Memo!



