
Containerizing Cloud Foundry

Preface

Goals & Non-Goals

Containerizing BOSH Deployments
Building Base Images from BOSH Stemcells
Building Images from BOSH Releases
Rendering Templates
Running Containers
Changes needed in BOSH & BOSH Releases

Runtime
Scheduler Requirements
A Kubernetes Implementation

Lifecycle of a Containerized BOSH Job

Fissile to evolve towards the containerization proposal
Why
How

Phase 1 - The Start
Phase 2 - The Move to BPM
Phase 3 - Operator at Runtime

FAQ

Open Points

Appendix
Intro to BOSH Concepts

BOSH Releases vs BOSH Runtime
BOSH Stemcell
BOSH Release
BOSH Process Manager (BPM)
BOSH DNS
BOSH Links & BOSH Links API
Config Server API & CredHub
BOSH Deployment Manifest
BOSH Orchestration

Considerations around a BOSH Kubernetes Cloud Provider Interface (CPI)

Preface
With this proposal we want to lay the groundwork to enable deploying BOSH Releases to 1

container schedulers like Kubernetes as "just another" supported deployment target (for BOSH
Releases in general and Cloud Foundry in particular).

As shown in prior work (see appendix) the existing extension point for underlying platforms,
namely the BOSH Cloud Provider Interface (CPI), does not allow a native integration while
retaining the full capabilities of container schedulers. That is why we propose to take BOSH
Releases as-is, but replace the orchestration part by something more tailored towards container
schedulers. Most of the heavy duty can actually be delegated to the container scheduler.

In order to really have container schedulers as an equally supported option, we propose to
integrate our work into the Continuous Integration (CI) of BOSH Releases. As an example, we
will create a tool to build container images for BOSH Releases. Those images should be built in
CI and published as official Cloud Foundry images . 2

Goals & Non-Goals
We propose to enable the deployment of BOSH Releases to container schedulers (in particular
Kubernetes, but the concepts described here should make it possible to support Docker Swarm,
Mesos or others as well) using the rich feature set these schedulers provide. If this requires
changes to how BOSH Releases are described or built we will try to introduce them in a way
that is also beneficial for the non-container world.

We propose to make containerized Cloud Foundry distributions first-class citizens to the
community:

-​ Base images should be built when BOSH Stemcells are built (this could even happen in
the same pipeline).

-​ CF projects should build container images in their CI. This should be made as easy as
possible. We would implement Concourse resources and/or cmdline tools to facilitate
this.

-​ The capability to containerize releases should be implemented in the BOSH CLI. Given
that BOSH users are accustomed to using the BOSH CLI for interacting with all BOSH
capabilities, it would be a natural fit for containerization commands to be included here.

2 This approach is similar to OpenStack’s Kolla.

1 In this document we're going to make a distinction between BOSH Releases (i.e. organizing source
code and packages software using BOSH) and BOSH Orchestration (i.e. deploying BOSH Releases
using the BOSH Director).

https://github.com/openstack/kolla

It is not a goal of this proposal to replace BOSH orchestration for classical virtual
machine-based infrastructure.

Containerizing BOSH Deployments
There are a few steps we need to take in order to transform a BOSH Deployment into a running
system using a BOSH Stemcell and a set of BOSH Releases:

Building Base Images from BOSH Stemcells
Base container images can be built from BOSH Stemcell base OS images produced by `bundle
exec rake stemcell:build_os_image` as shown in an example pipeline . This should be 3

integrated with bosh-linux-stemcell-builder pipelines.

Building Images from BOSH Releases
BOSH Releases contain all the metadata we need in order to build container images. Jobs and
packages each have a `spec` file that describes — amongst other things — the package
dependencies. The bosh-cli repository contains Golang packages to read those metadata and
compile packages. We will have to make sure to respect the way BOSH places packages for
jobs, and not include dependencies that are not required (see Package C and D below) : 4

Rendering Templates
Besides packages, BOSH jobs typically provide a number of ERB templates for configuration
and/or lifecycle hook scripts. We can render those templates re-using the bosh-template gem
that is also used by BOSH . There are basically three sources of values (in order of 5

precedence):
1.​ User provided values in the deployment manifest.

5 http://bosh.io/docs/job-templates.html

4 Packages C and D are not required at runtime. We should have a resulting image that only contains the
direct package dependencies for Job A, i.e. packages A and B. Conceptually multistage builds sound like
the right thing to do. moby/buildkit looks like a good starting point to implement building based on BOSH
metadata.

3 The resulting image will contain utilities (like gcc) that will be removed in most productive CF
deployments via BOSH Director property `director.remove_dev_tools`. In the future we should consider
separating build time from runtime base image.

https://github.com/SUSE/bosh-linux-stemcell-builder-ci/blob/master/bosh-linux-stemcell-builder-master.yml#L117-L124
https://github.com/cloudfoundry/bosh-linux-stemcell-builder/tree/master/ci
https://github.com/cloudfoundry/bosh-cli
https://rubygems.org/gems/bosh-template
http://bosh.io/docs/job-templates.html
https://docs.docker.com/engine/userguide/eng-image/multistage-build/
https://github.com/moby/buildkit

2.​ Defaults provided by the release spec file.
3.​ Hard-coded values as second parameter to `p()` calls.

Template rendering will be performed by a container image that contains the aforementioned
gem capabilities . This container image will be run as a precursor to the actual job containers, 6

rendering the ERB templates into a shared file system.

The container image will require the following inputs in order to render templates:

-​ Job spec (for property defaults).
-​ Properties section of the Deployment Manifest.
-​ Runtime environment of the init container (`spec.*` BOSH primitives).

Running Containers
In order to run a Containerized BOSH Deployment, we need the software (images), container
configuration, rendered templates, persistent volumes and connectivity information.
All of the required information is provided by BOSH Releases, BOSH deployment manifests
(and any other additional BOSH configuration that may be needed) and should be computed
using the following strategy:

-​ Software images should be based on container stemcell images and pre-compiled
packages.

-​ Container configuration such as an entrypoint, shared volumes, sizing and capability
information should be derived from the BPM information.

-​ Persistent volumes should be derived from the BOSH deployment manifest.
-​ Exposed ports should be derived from the BOSH Links.

Changes needed in BOSH & BOSH Releases
The goal for these changes is for BOSH Release descriptions to be sufficient so that they can
be transformed into artifacts that can be deployed/managed by other mechanisms.

-​ `bosh-linux-stemcell-builder` should produce container base images.
-​ BOSH Links should include a list of port ranges as a mandatory field.
-​ BOSH Releases should provide complete and sufficient BPM information and should not

rely on monit features as described:
-​ ‘check’ (‘with pidfile’, ‘start’, ‘stop’ and ‘group’).
-​ The following features should be supported using BPM:

-​ Health description (to replace `if failed host <host> <port> protocol http`).
-​ Memory constraints (to replace `if totalmem > <n> MB for 15 cycles, then

restart`).
-​ Process dependencies (to replace `depends on <process name>`).

6 Fissile uses configgin for rendering templates.

https://github.com/SUSE/configgin

-​ Optional processes and process counts (to replace ERB control
structures that turn components on/off, or create copies).

-​ BOSH Releases should provide bpm.yml.erb files that can be rendered at build time:
-​ E.g. they must not use `spec.*` properties, because that information is only

available at runtime.

Runtime

Scheduler Requirements
There are certain requirements a scheduler needs to fulfill to be able to be a deployment target
for the artifacts created by this proposal:

-​ Ability to co-locate containers in the same networking namespace.
-​ Ability for containers to share a filesystem.

A Kubernetes Implementation
We propose Kubernetes as a first target implementation for transforming BOSH Releases.
Given BOSH Container Images created in the manner described in the previous section, we are
tasked with creating a process that can provide us with the configuration required to deploy said
images on Kubernetes.

Template rendering will be done using Init Containers. Each Init Container will consume
information (job spec, deployment manifest, templates) using ConfigMaps and Secrets.

The equivalent of a BOSH Instance Group will be a StatefulSet or Deployment. Each BOSH Job
will be started as a Container inside a Pod.

We will use Kubernetes Jobs to run the equivalent of non co-located BOSH Errands.

Information for BOSH Links is transformed into Kubernetes Services.

Lifecycle of a Containerized BOSH Job
1.​ Template rendering:

-​ Will be done by running Init Containers using a specialized container image. See
Rendering Templates for more details.

2.​ BOSH Job pre-start:
-​ These should be run in their own init containers.

3.​ BOSH Job post-start:

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/tasks/configure-pod-container/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

-​ post-start for BOSH Jobs are different than Kubernetes PostStart hooks. BOSH
will run the post-start script once "monit successfully starts a process" . 7

-​ Given a BOSH Job that has a post-start template, we could run the script once
the following condition is true: the set of services created for the job is ready (e.g.
services can be resolved via DNS).

4.​ BOSH Job post-deploy:
-​ Given a BOSH Job that has a post-deploy template, we assume based on the

BOSH docs that it's idempotent, so we can run it as a Kubernetes Job until
successful completion.

5.​ BOSH Job drain:
-​ Draining should be performed by a Kubernetes PreStop hook.

6.​ BOSH Job post-stop:
-​ Post stop hooks may still be performed using a Kubernetes PreStop hook.

Fissile to evolve towards the containerization
proposal

Recently, we’ve noticed that every step we take in improving fissile takes us towards the
direction of this containerization proposal.
This includes:

-​ A feature to support “colocated containers” - multiple containers in a Kubernetes pod,
each running a set of BOSH jobs:

-​ https://github.com/SUSE/fissile/pull/352
-​ The new approach for pod management - uses stateful sets for all roles, resulting in

more fidelity with BOSH lifecycles:
-​ https://github.com/SUSE/fissile/pull/354
-​ https://github.com/SUSE/fissile/wiki/Pod-Management-using-Role-Manifest-Tags

-​ Secret management - the new implementation manages secret variables using
Kubernetes Secrets and has a runtime component:

-​ https://github.com/SUSE/fissile/pull/338
-​ https://github.com/SUSE/fissile/wiki/Helm-Secret-Management

-​ Plans to gradually deprecate the Role Manifest format in lieu of the BOSH deployment
manifest format.

Why
1.​ There are developers actively supporting fissile that can take us in that direction.

7 https://bosh.io/docs/post-start.html

https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
https://bosh.io/docs/post-deploy/#script-implementation
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
https://github.com/SUSE/fissile/pull/352
https://github.com/SUSE/fissile/pull/354
https://github.com/SUSE/fissile/wiki/Pod-Management-using-Role-Manifest-Tags
https://github.com/SUSE/fissile/pull/338
https://github.com/SUSE/fissile/wiki/Helm-Secret-Management
https://bosh.io/docs/post-start.html

It’s a shame to duplicate effort and to work on two different projects that have the same
goals.

2.​ There are customers with deployments of fissile-based distros that need support.
This will help our migration stories and ensure a steady and smooth progress to the ideal
scenario.

3.​ We want fissile to be part of the BOSH/Extensions PMC. We want our work to contribute
to the ecosystem.

4.​ Fissile-based distros work and are certified by the CFF. We are ready to demo this and
open this style of running Cloud Foundry to the community.

How
The transition can happen in 3 phases, and at the end of each of these, fissile will get closer to
the proposal.

Phase 1 - The Start
-​ Using the colocated containers implementation, we will first start splitting off the jobs that

repeat, such as:
-​ metron-agent
-​ global-properties

-​ We will reduce the "outside-BOSH" fissile functionality:
-​ Role hooks (to be replaced with BOSH jobs and BOSH hooks).
-​ Remove the “processes” key in the run information from the Role Manifest.

-​ Move properties in the fissile role manifest to be job-namespaced.
-​ Implement a “no-monit” tag for fissile roles. This allows a container to run without the

need for monit. It will use information derived from BPM or information added to the Role
Manifest to generate the correct entrypoint.

Phase 2 - The Move to BPM
-​ Reduce "outside-BOSH" fissile functionality further:

-​ The "run" key from roles should be removed in favor of BPM and link information.
-​ Modify Fissile so that each job gets its own container (1 process per container). The

“colocated-container” tag can be removed.
-​ Add enough information so that all jobs contain enough entrypoint information using

BPM. This also means monit should no longer be required, thence removed. The
“no-monit” tag should be deprecated, as “monit-less” becomes default behavior.

-​ Add support for 1-to-1 configuration without fissile templating. This will require changes
to configgin so that a deployment manifest file (instead of environment variables) can be
used to render templates, instead of environment variables.

Phase 3 - Operator at Runtime
-​ Full support for configuration via BOSH deployment manifests instead of a Role

Manifest.
-​ Rendering of configurations happens in a separate container that creates config maps.
-​ Fissile can create and manage kube objects as an operator at runtime, given a BOSH

deployment manifest.
-​ BOSH Releases are individually turned into Docker images that can be referenced from

a BOSH deployment manifest. These would contain compiled packages and job
sources.

FAQ

Isn’t it better to implement the proposal from scratch?
We don’t think so. We have multiple teams with experience in running containerized Cloud
Foundry and with this approach everyone will work towards the same goal.

How long will it take until I can run a containerized version of Cloud Foundry?
You can run one now. It won’t run in accordance with this proposal, but we want to make it so.
This is one of the reasons we want to proceed with this plan. The community will have access to
a working containerized Cloud Foundry all the way.

How long will it take to evolve fissile in the manner described?
6-12 months.

Following this plan, will it be possible to keep updating a live-system, initially deployed
with today’s fissile and end up with the state described by the containerizing CF
proposal?
Yes!

What’s the most difficult piece of this journey?
We believe it’s going to be the move from monit to BPM. The necessary and sufficient condition
is that all releases contain BPM sufficient information so that we can use it (something we'll
need to contribute). There is no need for cf-deployment to move fully to BPM though. We could
use BPM while cf-deployment still uses monit.

Why is fissile so different from the proposal?
Fissile was created a few years ago, when deployment manifests looked different, and there
was no effort like BPM. The Kubernetes landscape was different as well. There were no

StatefulSets or Operators. BOSH 2.0 is more amenable to what we’re trying to do with this
proposal.

I don’t like the name “fissile”. Can we change it?
Sure.

From a config management perspective, the roles,opinions,dark-opinions will become
obsolete in favor of a manifest.yml. Would a cloud-config.yml also be required?
Correct - all the fissile-specific config files will be deprecated in favor of deployment manifests.
It’s possible that a cloud config could be used to also configure kube parameters like the storage
class.

Open Points
-​ How can I see a diff of what I am going to deploy?
-​ How do we handle backup & restore of a CF deployment?
-​ How are credentials generated?
-​ BOSH deployment options

-​ How do we support canary deployments?
-​ StatefulSet rolling update only provides primitives, i.e. gradually change

the value for `partition`.
-​ What about `max_in_flight`
-​ What about `serial`

-​ How to support BOSH Links API
-​ How do we provide logs?
-​ Collocated BOSH errands

Appendix

Intro to BOSH Concepts
This section provides a recap on existing BOSH concepts since they are relevant for the
Containerizing Cloud Foundry discussion. You can skip to the next chapter in case you are
already familiar with those concepts.

BOSH Releases vs BOSH Runtime
By BOSH Releases we refer to the entire set of information describing how to package and run
distributed software that's available at build-time:

-​ job definitions

https://kubernetes.io/docs/tutorials/stateful-application/basic-stateful-set/#rolling-update
https://github.com/cloudfoundry/bosh-notes/blob/master/proposals/links-api.md

-​ package definitions
-​ deployment manifests
-​ stemcells
-​ bpm.yml definitions

By BOSH Runtime we refer to the active components of BOSH, that actively manage
deployments at runtime:

-​ director
-​ agent
-​ BPM release
-​ BOSH DNS Release

BOSH Stemcell
A base operating system image with secure configuration, some common utilities and a BOSH
Agent. BOSH currently provides stemcells based on Ubuntu Trusty, CentOS 6.5 and SUSE
Linux.

BOSH Release
A BOSH Release consists of jobs and packages. Jobs include metadata about required
packages (runtime dependencies), configuration properties and links (e.g. properties provided to
or consumed from other jobs) and templates for configuration, control scripts (for start and stop)
and lifecycle hook scripts (pre-start, post-start, post-deploy and drain).

Packages include metadata about required packages (compile-time dependencies), source
and/or binary blobs, an optional packaging script and a script to compile the package.

BOSH Process Manager (BPM)
BPM is a release providing a collocated job that runs any BOSH job in a separate container.
BOSH Releases using it specify a bpm.yml template instead of the usual control script. The
bpm.yml specifies executables with parameters, limits (memory, etc.), volumes, capabilities,
lifecycle hooks, etc. In short, everything required to run the job in a container.
For now, starting the job in a container is done by BPM, which is triggered and controlled by
monit.

BOSH DNS
BOSH will distribute DNS records to the agents. These will be interpreted and provided via a
local DNS server with an additional co-located bosh-dns-release.
This will provide a couple of features to BOSH managed software:

-​ client side load balancing​
*.database-z1.diego1.cf-cfapps-io2-diego.bosh

http://bosh.io/docs/dns.html

-​ DNS aliases​
BOSH deployment operators will be able to configure alias DNS records like​
bbs.service.cf.internal →
*.database-z1.diego1.cf-cfapps-io2-diego.bosh

-​ health based DNS aliases

BOSH Links & BOSH Links API
With BOSH links releases can ‘provide’ and ‘consume’ weakly typed sets of properties.
There are properties provided by default:

-​ name [String, non-empty]: Instance name as configured in the deployment manifest.
-​ id [String, non-empty]: Unique ID.
-​ index [Integer, non-empty]: Unique numeric index. May have gaps.
-​ az [String or null, non-empty]: AZ associated with the instance.
-​ address [String, non-empty]: IPv4, IPv6 or DNS address. See Native DNS Support for

more details.
-​ bootstrap [Boolean]: True if the instance is the first instance of its group.

In addition, releases can expose any of their properties, typically ports, usernames and secrets.

Config Server API & CredHub
With the config server API, BOSH introduced variable interpolation and generation capabilities.
When the BOSH director discovers a not yet interpolated variable it contacts the configured
config server to resolve (and potentially generate) values. The CredHub project is the most
prominent implementation of the config server API.
It is likely that more components in the Cloud Foundry ecosystem (in particular service brokers)
will get a runtime dependency. An example here is management of credentials which is being
outsourced to CredHub.

BOSH Deployment Manifest
A BOSH Deployment Manifest (together with other configuration sources; e.g. cloud and
runtime config) describes the desired state of a distributed system. I.e. which BOSH Jobs to
deploy, whether to co-locate or separate certain jobs and how they should be configured.

BOSH Orchestration
In order to materialize the desired state BOSH does the following things:

-​ Present a diff of the old (if any) and new desired state.
-​ Compile packages based on the given stemcell version.
-​ Render job templates:

-​ Provide properties and links in the rendering context.
-​ [Optional] Delegate creation and storage of credentials to a config server (e.g.

CredHub).

http://bosh.io/docs/links.html
http://bosh.io/docs/dns.html#links
https://github.com/cloudfoundry/bosh-notes/blob/master/finished/config-server.md
https://github.com/cloudfoundry-incubator/credhub

-​ Delegate creation of compute nodes and disks to Cloud Provider Interface (CPI).
-​ Delegate installation of required packages and distribution of rendered templates to the

BOSH Agent.
-​ Remove software that was only required for compilation (e.g. gcc).
-​ Deploy/update a canary first in order to verify new versions can be installed.
-​ Check on a regular basis if actual state and current state match and take means to

converge the actual state to the desired state if they don’t (resurrection).

Considerations around a BOSH Kubernetes Cloud Provider
Interface (CPI)
There have been a few approaches to implementing a BOSH Kubernetes CPI:

-​ https://github.com/cfibmers/kubernetes-cpi
-​ https://github.com/SAP/bosh-kubernetes-cpi-release
-​ https://github.com/bosh-cpis/bosh-kubernetes-cpi-release

The biggest problem that all approaches revealed is that nesting containers is a fragile venture
at best.
When either CF Garden or Kubernetes changes its overlay file system, a CPI that creates
nested file systems might break if the particular combination does not support nesting.

Problems however don't stop there:

1.​ Declarative vs. imperative​
While BOSH from 10.000 feet is a declarative approach to configuration management,
the implementation between the BOSH director and the CPI (+ VM agent) is imperative.​
"Create a VM, then create a disk, then attach the disk, then render templates and push
to VMs, then start processes one-by-one, ..."​
In contrast, Kubernetes expects a declarative description for a Pod, i.e. "run me a Pod,
that has the following volumes mounted and runs the following containers".​
With Pods being immutable the mapping of BOSH VMs to Kubernetes Pods does not
really work out.

2.​ Manual vs. dynamic IP​
When we start to workaround the issue from #1 by e.g. re-creating a Pod with only a
volume added we run into the next problem.​
BOSH assumes IPs not to change during the lifetime of a VM. However, Kubernetes
gives no control over a Pod’s IP.

3.​ Stemcell vs. fully defined image​
BOSH creates VMs from a stemcell image and then installs software required to fulfil
specific roles in a deployment.​
In contrast, Kubernetes expects the container images to be immutable. If you want to
benefit from higher-level constructs of Kubernetes, like a StatefulSet, Kubernetes will
reschedule a Pod with an empty stemcell.

https://github.com/cfibmers/kubernetes-cpi
https://github.com/SAP/bosh-kubernetes-cpi-release
https://github.com/bosh-cpis/bosh-kubernetes-cpi-release

Some of the problems that need to be solved depend on the approach you choose within a
continuum between BOSH native and Kubernetes native. Most of the problems can probably be
worked around. However, in order to get to a solution that you are confident to recommend for
productive use you have to take sides. Either you change BOSH to support using the rich set of
features Kubernetes provides for running software, or you reduce Kubernetes to not more than
a primitive IaaS. No matter what side you choose, either of the questions will arise "Why
Kubernetes?" or "Why BOSH?".

	Containerizing Cloud Foundry
	Preface
	Goals & Non-Goals
	Containerizing BOSH Deployments
	Building Base Images from BOSH Stemcells
	Building Images from BOSH Releases
	Rendering Templates
	Running Containers
	Changes needed in BOSH & BOSH Releases

	Runtime
	Scheduler Requirements
	A Kubernetes Implementation
	Lifecycle of a Containerized BOSH Job

	Fissile to evolve towards the containerization proposal
	Why
	How
	Phase 1 - The Start
	Phase 2 - The Move to BPM
	Phase 3 - Operator at Runtime

	FAQ

	Open Points
	Appendix
	Intro to BOSH Concepts
	BOSH Releases vs BOSH Runtime
	BOSH Stemcell
	BOSH Release
	BOSH Process Manager (BPM)
	BOSH DNS
	BOSH Links & BOSH Links API
	Config Server API & CredHub
	BOSH Deployment Manifest
	BOSH Orchestration

	Considerations around a BOSH Kubernetes Cloud Provider Interface (CPI)

