

Assignment 5: Clever Hangman
CompSci 101 Fall 2020

Due: Oct 27, 2020

Overview

Completing the Assignment
Requirements

Requirements from Hangman
Requirements New to Clever Hangman
Overview of Changes to Functions

Hangman Functions To Modify
createDisplayString(lettersGuessed, missesLeft, hangmanWord)
runGame(filename)

New Functions to Implement
handleUserInputDebugMode()
handleUserInputWordLength()
createTemplate(currTemplate, letterGuess, word)
getNewWordList(currTemplate, letterGuess, wordList, debug)
processUserGuessClever(guessedLetter, hangmanWord, missesLeft)

Understanding How Functions Fit Together
Note on Debug Mode

Making the Program Clever and Hard to Win
Writing Function getNewWordList

Creating the Dictionary
Printing the Dictionary Contents in Debug Mode

Implementing and Debugging Tips
Example Clever Hangman Runs

Session with 2 Games

Submitting and Grading
Autograded portion [41 points]
Hand-graded portion [9 points]

1

Overview
You will adapt your Hangman program to play Clever Hangman. You will create a
CleverHangman.py module using your Hangman.py module and the lowerwords.txt file
provided in the Hangman assignment.

Clever Hangman is in some ways the same as Hangman -- and you should start with your
program that plays hangman that you wrote for the Hangman assignment. Do not import
Hangman.py; instead, make a new project, copy your Hangman module into this project, and
rename it to CleverHangman.py.

If you don't have a working Hangman program, we have released a form you can fill out to
request a working Hangman assignment. NOTE: If you request this program, then you cannot
get credit for the Assignment 4 program unless you've submitted the code that will be graded
before you request a working Hangman module. Also we will not release the code until Oct 22.
The form can be found here.

Completing the Assignment
There is a required reading quiz for this assignment that can be found on sakai.

You must create a module CleverHangman.py that allows the user to play Hangman and
guess a secret word using the clever/cheating method outlined below. See the sample runs and
the requirements for details. See the class lecture about the clever hangman assignment for
details. You will modify two of the functions from your Hangman.py module and create four new
functions for this assignment.

For full credit, you should have no global variables.

There are a few main ideas to use in creating the clever version of Hangman:

1.​ Divide the list of possible secret words into groups, each corresponding to a word
template, and choose the largest group as the source for the secret word that the user is
trying to guess from.

2.​ Develop the program using a smaller word list at first to be sure that your code is
working properly.

2

https://docs.google.com/document/d/12lgu4BB7huTjGs4CFaNiLwu4H1nWDZUqAAS_YbWRBhA/edit?usp=sharing
https://docs.google.com/forms/d/e/1FAIpQLSfnZRViLaNLtXWZRrITVzF2IQdnP2kb8aBVLNT7ZIbwtc_jqg/viewform?usp=sf_link

Requirements
You must complete the Reading Quiz on Sakai. Note this quiz is due the day the assignment is
due, and does not have a grace day. The intent of these assignment reading quizzes are that
you do them early to check your understanding of the assignment.

There are also two sets of requirements for game play: those carried over from the Hangman
assignment, and those new to this assignment.

Requirements from Hangman
1.​ The user must be given a choice of (e)asy or (h)ard which are 12 and 8 misses until

hung, respectively. You do not need to check for bad user-input. For example, you can
assume the user will enter an 'h' or an 'e'. See the example runs below where the default
is 12 for easy and the user can enter 'h' for hard.

2.​ The user must be told how many misses are left on each turn when the user enters a
letter. When a letter in the word is correctly guessed the number of misses left doesn't
change, but an incorrectly-guessed letter changes the number of misses left.

3.​ Guessing a letter that was already guessed should not count as a miss and should not
count as a guess when reporting summary game statistics.

4.​ When the user has guessed the word, or the number of misses allowed is reached,
the game should be over and individual game summary statistics about the number of
guesses and misses should be printed. See the example runs below.

5.​ On each turn, the secret word should be printed with underscores for unknown letters
and correctly-guessed letters in place as warranted. A single space should appear
between each underscore and letter.

6.​ After each Clever Hangman game, the user should be prompted to play again. The user
can play as many games as they want. Once they decide to quit, summary statistics for
the entire “session” (multiple games) should be printed, showing the total win-loss count.

a.​ You should implement this functionality in the main program block.

Requirements New to Clever Hangman

1.​ The user must be asked how many letters in the word to be guessed and then a word
from all words of that length must be chosen at random from these words as the secret
word. This is different from the Hangman program where the number of letters in the
secret word was chosen at random. You do not need to guard against bad user input.

2.​ The user must be shown all the letters that have not yet been guessed, and these
letters must appear in sorted order (see the example runs below). This is different
from the Hangman program where the user was shown letters already guessed, rather
than letters not yet guessed.

3.​ You must make the program "clever" in that after each letter guessed, the list of possible
secret words is as large as possible. This is described in detail below. As part of making

3

the program clever, you must write and call two functions described below.
4.​ Inside runGame(), you must include a local debug variable. When debug is set to True,

the game’s console output should provide information about the list of possible secret
words and how dictionary keys/values are used in creating a new list of possible secret
words after each letter guessed. The user should be prompted as to whether the
debug value is True (for mode) or False (for play mode).

a.​ The debug variable will be initialized in runGame() using the return value of the
new function handleUserInputDebugMode(). The debug variable will also be
passed as a parameter to the new function getNewWordList().

b.​ For more on debug mode, see the Note on debug mode,
handleUserInputDebugMode(), and Making the Program Clever and Hard to Win.

Overview of Changes to Functions
The following Hangman functions are no longer needed and can be deleted:

●​ getWord
●​ updateHangmanWord
●​ processUserGuess

The following functions should be kept as-is from Hangman:

●​ handleUserInputDifficulty
●​ handleUserInputLetterGuess

The following functions from Hangman will be modified:

●​ createDisplayString
●​ runGame

The following new functions will be implemented:

●​ handleUserInputDebugMode
●​ handleUserInputWordLength
●​ createTemplate
●​ getNewWordList
●​ processUserGuessClever

Hangman Functions To Modify

createDisplayString(lettersGuessed, missesLeft, hangmanWord)
Instead of returning the letters the user has guessed, this function will now return the letters the
user has NOT guessed. This is done by printing all the letters of the alphabet (in alphabetical
sorted order) and replacing the letters that the user has guessed with an empty space (" ").

4

For example:
Assume the user has guessed the letters “b”, “e”, and “u”.
letters not yet guessed: a cd fghijklmnopqrst vwxyz
Note that there is one space between the “:” and the letter “a”.

runGame(filename)
This function needs to be modified to call the new functions that you will be creating for this
Clever Hangman assignment. This function should also print (or cause to be printed) additional
information to the console when the local variable debug is set to True. More information on
debug mode is explained in the Note on debug mode, handleUserInputDebugMode(), and
Making the Program Clever and Hard to Win.

5

New Functions to Implement

handleUserInputDebugMode()
This function will prompt the user if they wish to play in debug mode. True is returned if the user
enters the letter “d”, indicating debug mode was chosen; False is returned otherwise.

Parameters:
No parameters

Returns:
Type: bool
True is returned if the user wishes to play in debug mode, false otherwise.

Example:
Which mode do you want: (d)ebug or (p)lay: d

handleUserInputWordLength()
The length of secretWord is no longer randomized, instead the user will be asked how long
secretWord should be. You do not need to check for bad user input.

Parameters:
No parameters

Returns:
Type: int
The length specified by the user.

Assumptions:
The user will input a value between 5 to 10 (inclusive).

Example:
How many letters in the word you'll guess: 8

createTemplate(currTemplate, letterGuess, word)
This function will create a new template for the secret word that the user will see. For example,
"_ _ a _" is the currentTemplate for the word "play" with the "a" guessed, but without spaces
between the underscores and the letters. The spaces were added for readability and should
not be included in your Clever Hangman. This function will modify currentTemplate to reflect
letterGuess. This new template should be consistent with the currentTemplate and word.

6

Parameters:
●​ currTemplate (type: string) - the current displayed hangman template in which each

character in the string represents a letter in the secret word. It is either actually a letter,
or “_”, representing that the user has not yet guessed that letter.

●​ letterGuess (type: string) - The user’s current guess, represented as a string of length 1,
i.e. "a".

●​ word (type: string) - the current secret word.

Returns:
Type: String
The new template is returned, which is consistent with the previous template and word.

Example:
createTemplate('tr__', 'u', 'true') returns 'tru_'

getNewWordList(currTemplate, letterGuess, wordList, debug)
This function constructs a dictionary of strings as the key to lists as the value. It does this by
calling createTemplate on every word in wordList with currTemplate and
letterGuess. The string createTemplate returns is a key into the dictionary and the current
word from wordList is added to the list that maps to that key.

After creating the dictionary, this function returns the (key, value) pair with the longest list. If
there is a tie, it should ensure that the template returned is the one with the most
underscores in it and therefore the user cannot win on that turn.

Also see Writing Function getNewWordList and Making the Program Clever and Hard to Win.

Parameters:

●​ currTemplate (type: string) - the current displayed hangman in which each character in
the string represents a letter in the secret word and it is either an actually letter or “_”,
representing that the user has not yet guessed that letter.

●​ letterGuess (type: string) - The user’s current guess, represented as a string of length 1
●​ wordList (type: list of strings) - list of possible secret words for Clever Hangman
●​ debug (type: boolean) - whether or not the game is running in debug mode. See note on

debug mode here.

Returns:
Type: (string, list)
A 2-tuple is returned in which:

●​ The first element is the template corresponding to the largest group of words
●​ The second element is the list of words that match this template

7

processUserGuessClever(guessedLetter, hangmanWord,
missesLeft)

Takes the user's guess, the user's current progress on the word, and the number of misses left;
updates the number of misses left and indicates whether the user missed.

Parameters:

●​ guessedLetter (type: string) - the user's current guess, represented as a string of length
1, the return value of handleUserInputLetterGuess

●​ hangmanWord (type: list of strings) - represents the currently displayed hangman word,
where each element in the list represents a letter in the secret word and it is either the
actual letter or "_" representing that the user has not yet guessed that letter

●​ missesLeft (type: int) - the number of misses the user has left

Returns:
Type: list
A list with the following at each index:

●​ Index 0: (type: int) an updated value for missesLeft based on the user's guess in
guessedLetter

●​ Index 1: (type: bool) indication of whether the user made a correct guess, where True
means the user guessed a letter in the word and False means the user missed

Assumptions:
guessedLetter has the value returned from handleUserInputLetterGuess, which means
that it is guaranteed to be a letter that the user has not already guessed. hangmanWord is the
list version of the template that was returned by getNewWordList.

Understanding How Functions Fit Together
As in Hangman, it is up to you to determine how the functions (both old and new) should fit
together into a working game. Although some functions are unchanged from regular Hangman,
how/when they should be called in runGame may change in the context of Clever Hangman.

For example, before calling processUserGuessClever on each turn, your Clever Hangman
code should already have called getNewWordList and used its return value to select a new
template. This new template will be passed to processUserGuessClever as a list, and your
code should determine if the guess was a miss based on the guessed letter’s presence in your
updated template.

Note on Debug Mode
Remember that the local variable debug will be initialized in runGame using the return value of

8

the function handleUserInputDebugMode. The variable debug will also be passed as a
parameter to the function getNewWordList.

As described above, Clever Hangman will print extra information to the console if the user plays
in debug mode. The extra information can be seen in Example Clever Hangman Runs. Inside
runGame and getNewWordList, you will use if statements to decide whether certain
information should be printed, i.e.:

 if debug:
 print("# words left is", len(wordList))

Making the Program Clever and Hard to Win
When the user guesses a letter in the Clever Hangman program, the computer will change the
secret word it's thinking of if that will make the game harder for the human player. However, any
changes must be consistent with all previous guesses.

The user/player isn't aware that the computer is changing the secret word (unless debug mode
has been employed), because each time the player guesses, the computer will change the
secret word in a consistent way that's not apparent to the player except perhaps via a frustration
factor as the word seems harder and harder to guess.

You can see how the computer does this from the debugging output shown in the clever
hangman demo partially reproduced below. To cause the game to print the output that shows
the current word and number of possible words, modify the return value of
createDisplayString in runGame.

Note that this output joins a game in which the player has already guessed five letters that don't
appear in the word: 'a', 'i', 's', 'e', and 'o'. The debugging output shows that the computer's secret
word is "truly" chosen from among 87 words that could have been the secret word. The user has
no letters correct and then guesses a 'u'.

The computer now divides its 87 words into groups: the groups are based on the existing word
template which is five underscores, and the letter guessed: 'u'. There are three groups: one with
'u' as the third letter, one with 'u' as the second letter, and one with no occurrences of 'u'. These
groups contain 32, 47, and 8 letters, respectively, as shown in the debugging output below. Be
sure to sort the templates alphabetically before printing in debug mode!

letters not yet guessed: bcd fgh jklmn pqr tuvwxyz
misses remaining = 3
_ _ _ _ _
(word is truly)
possible words: 87

9

letter> u
_____ : 8
__u__ : 32
_u___ : 47
keys = 3

Remember that the words the computer chooses from, as well as each template corresponding
to a group, must be consistent with all guesses made so far. This means none of the words can
contain an 'a', 'i', 's', 'e', or 'o'. In particular, the group with no occurrences of 'u' includes words
like "dryly" and "crypt", but does not include "psych" because that has an 's' in it and the player
has been told there are no occurrences of 's'.

The numbers shown are the size of each group, so 'u' as the third letter includes 32 words such
as bluff and blurb, but not trust because there is no 's'. The group with 'u' as the second letter
has 47 words in it including "buddy", "bunch", and "furry", but not "rusty" because there is no 's'.
You must write code to create the groups and count the words in each group as part of
the function getNewWordList.

The computer chooses the group with the most words, where 'u' is the second letter. It then
continues to play.

letters not yet guessed: bcd fgh jklmn pqr t vwxyz
misses remaining = 3
_ u _ _ _
(word is duchy)
possible words: 47
letter> b
bu___ : 14
_u___ : 33
keys = 2
you missed: b not in word

letters not yet guessed: cd fgh jklmn pqr t vwxyz
misses remaining = 2
_ u _ _ _
(word is puppy)
possible words: 33

Note that after guessing a 'u' correctly, the computer has chosen "duchy" as its secret word, but
in fact it has chosen the entire group/list of words with second letter 'u' and no occurrences of
'a', 'i', 's', 'e', or 'o' as the secret word -- a group consisting of 47 words that are returned by the
function getNewWordList.

10

The player guesses 'b' and the computer finds all possible templates for each word in the
existing list of 47 words. There are two such templates: those with 'b' as the first letter and those
with no occurrences of 'b'. There are no words with 'b' in them other than in the first position
because words like numbs and cuban aren't in the list of 47 words being considered.

Again the computer chooses the largest list/group, the size of which is 33, and continues to play.
Notice that the number of possible words continues to decrease. When the player guesses 'c'
there are four templates:

letter> c
cu___ : 2
_uc__ : 2
_u_c_ : 8
_u___ : 21
keys = 4
you missed: c not in word

letters not yet guessed: d fgh jklmn pqr t vwxyz
misses remaining = 1
_ u _ _ _
(word is furry)
possible words: 21

In summary, the important step in writing Clever Hangman is to divide the list of possible words
into disjoint or non-overlapping groups and choose the largest group of words to continue to
play. On each turn, the group must be consistent with previous guesses, but that's pretty simple
to do: Note that every time you call getNewWordList with a wordList parameter, the function
will return a smaller list of possible words. On the next turn, you will pass this smaller list to
getNewWordList and further reduce the list of possible words. In this way, your code will
make sure that the list of possible secret words is always consistent with all guesses up
to that point in the game.

Writing Function getNewWordList
This function has a list of possible secret words, the current template for the secret word (a
string) the current single-letter guess, and a debug boolean as parameters. The function returns
a 2-tuple. The first element of the return tuple is a new template (string), and the second
element of the return tuple is the new list of possible secret words, each of which matches the
template. The computer will "choose" one of these words as the secret-word; it doesn’t matter
which, since all words matching the template are equivalent. You'll use a dictionary in creating
the tuple to return.

The main idea is to use a dictionary in which each possible template/string is a key and the

11

corresponding value is a list of words that matches that template.
For example, the list of words matching

't _ t _ _'

Is this list

 [titan, tithe, title, titus, total, tutor]

and words matching

'_ _ _ t t'

Is this list (not all words may be recognizable as typical English words).

 [brett, burtt, hiatt, knott, pratt, scott, wyatt]

Creating the Dictionary
To create this dictionary, you iterate over every possible word in parameter wordList (initially
this is all words, but the list of possible words changes after each guess made by the
player). You should compare each possible word to the parameter currentTemplate and
the parameter letterGuess by the user. This combination of word from parameter
wordList, currentTemplate, and letterGuess creates a key in the dictionary -- you get
this key by calling the function createTemplate once for each word in parameter wordList.

For example, suppose the player is guessing a four-letter word with no letters guessed, the
current guess is 'O', and the list of possible words as shown. Since no letters are guessed you'll
have these three parameters to getNewWordList:

● The string template would be "_ _ _ _" (no spaces between underscores)
● The letter guessed is ‘O’
● The list of words is ["OBOE", "NOON", "ODOR", "ROOM", "SOLO", "TRIO",
"GOTO", "OATH", "OXEN", "PICK", "FRAT", "HOOP"]

The (key, value) pairs in the dictionary you'll code in getNewWordList are formed as follows
by iterating over the words in wordList. Since no letters have been guessed, the template is
"_ _ _ _" . You'll write code to create a dictionary key from the template, the word, and the
guessed letter by passing them to function createTemplate and getting the string that's the
key in the dictionary as the return value.

In the table here, the left column has parameters to the function createTemplate. You see the

12

template (with spaces added for clarity), each word from the list of possible words, and the letter
guessed. Write code using the template, the letter, and the word to return a string that's a key in
the dictionary as shown below. The value in the dictionary associated with the key is a list of
words that match the key.

Parameters to createTemplate Return value: key
in dictionary

Value associated with key in
dictionary of function
getNewWordList

" _ _ _ _ ", "OBOE", "O" "O _ O _" ["OBOE"]

" _ _ _ _ ", "NOON", "O" "_ O O _" ["NOON"]

" _ _ _ _ ", "ODOR", "O" "O _ O _" ["OBOE", "ODOR"]

" _ _ _ _ ", "ROOM", "O" "_ O O _" ["NOON", "ROOM"]

" _ _ _ _ ", "SOLO", "O" "_ O _ O" ["SOLO"]

" _ _ _ _ ", "TRIO", "O" "_ _ _ O" ["TRIO"]

" _ _ _ _ ", "GOTO", "O" "_ O _ O" ["SOLO", "GOTO"]

" _ _ _ _ ", "OATH", "O" "O _ _ _" ["OATH"]

" _ _ _ _ ", "OXEN", "O" "O _ _ _" ["OATH", "OXEN"]

"_ _ _ _", "PICK", "O" "_ _ _ _" ["PICK"]

"_ _ _ _", "FRAT", "O" "_ _ _ _" ["PICK", "FRAT"]

"_ _ _ _", "HOOP", "O" "_ O O _" ["NOON, "ROOM", "HOOP"]

This would create a dictionary with six (key,value) pairs as shown below.

13

Key Value

"O _ O _" ["OBOE", "ODOR"]

"_ O O _" ["NOON", "ROOM", "HOOP"]

" _ O _O" ["SOLO", "GOTO"]

"_ _ _ O" ["TRIO"]

"O _ _ _" ["OATH", "OXEN"]

"_ _ _ _" ["PICK", "FRAT"]

The largest collection of values (most words) corresponds to key "_ O O _", so the program
would pick a secret word at random from the list of three words: ["NOON", "ROOM",
"HOOP"] and the template for the game would be "_ O O _" with three possibilities. These
two values, the string template and the corresponding list of words, are returned as a 2-tuple by
getNewWordList. Find the value (list of strings) with the maximal length, and then return the
key associated with this list and the list as elements of a 2-tuple like this:

 ("_ O O _", ["NOON, "ROOM", "HOOP"])

The player may think she has hit the jackpot with two O's in the word, and that may be true, but
there are more words to eliminate than with any other template.

Printing the Dictionary Contents in Debug Mode
If debug is True, the game’s console output should provide information about how the dictionary
keys/values are used in creating a new list of possible secret words. For each template in the
dictionary (sorted lexicographically/alphabetically), you will print the template, the length of
the word list corresponding to that template, and the total number of keys (templates). An
example for the dictionary in the previous section would be:

O_O_ : 2
O___ : 2
OO : 3
_O_O : 2
___O : 1
____ : 2
keys = 6

14

Implementing and Debugging Tips
Develop the program using a smaller word list at first to be sure that your code is working
properly.

For example: Like Hangman, the completed game will draw words from lowerwords.txt.
However, it may be hard to debug your program with that many possible words. One idea would
be to create a smaller word file and use that instead of lowerwords.txt when debugging your
game.

Example Clever Hangman Runs

Session with 2 Games
In the first game, the user loses on hard mode with debug set to True. In the second game, the
user again loses on hard mode but with debug set to False.

Which mode do you want: (d)ebug or (p)lay: d
How many letters in the word you'll guess: 6
How many misses do you want? Hard has 8 and Easy has 12
(h)ard or (e)asy> h

letters not yet guessed: abcdefghijklmnopqrstuvwxyz
misses remaining = 8
_ _ _ _ _ _
(word is flamer)
possible words: 6166
letter> a
______ : 3441
_____a : 80​
____a_ : 233
___a__ : 316
___a_a : 11
__a___ : 549
__a__a : 19
__a_a_ : 10
__aa__ : 1
_a____ : 962
_a___a : 39
_a__a_ : 57
_a_a__ : 40

15

_a_a_a : 12
_a_aa_ : 3
a_____ : 273
a____a : 21
a___a_ : 30
a__a__ : 32
a__a_a : 3
a_a___ : 26
a_a__a : 7
aa____ : 1
keys = 23
you missed: a not in word

letters not yet guessed: bcdefghijklmnopqrstuvwxyz
misses remaining = 7
_ _ _ _ _ _
(word is mounds)
possible words: 3441
letter> o
______ : 2105
_____o : 23
____o_ : 147
____oo : 1
___o__ : 148
___o_o : 1
___oo_ : 4
__o___ : 228
__o__o : 2
__o_o_ : 8
__oo__ : 32
_o____ : 528
_o___o : 6
_o__o_ : 41
_o_o__ : 15
_o_o_o : 1
_o_oo_ : 1
_oo___ : 77
_oo_oo : 1
o_____ : 60
o___o_ : 3
o__o__ : 8
o__oo_ : 1
keys = 23

16

you missed: o not in word

letters not yet guessed: bcdefghijklmn pqrstuvwxyz
misses remaining = 6
_ _ _ _ _ _
(word is burkes)
possible words: 2105
letter> u
______ : 1441
_____u : 2
____u_ : 36
___u__ : 84
___u_u : 1
__u___ : 107
_u____ : 362
_u__u_ : 13
_u_u__ : 11
u_____ : 37
u___u_ : 5
u__u__ : 5
u_u___ : 1
keys = 13
you missed: u not in word

letters not yet guessed: bcdefghijklmn pqrst vwxyz
misses remaining = 5
_ _ _ _ _ _
(word is wilted)
possible words: 1441
letter> i
______ : 503
_____i : 2
____i_ : 54
___i__ : 158
___i_i : 2
__i___ : 225
__i__i : 1
__i_i_ : 7
__ii__ : 2
_i____ : 355
_i__i_ : 28
_i_i__ : 56
_i_i_i : 2

17

i_____ : 28
i__i__ : 16
i_i___ : 2
keys = 16
you missed: i not in word

letters not yet guessed: bcdefgh jklmn pqrst vwxyz
misses remaining = 4
_ _ _ _ _ _
(word is served)
possible words: 503
letter> e
______ : 2
_____e : 5
____e_ : 13
___e__ : 9
___e_e : 2
___ee_ : 5
__e___ : 42
__e__e : 12
__e_e_ : 23
__ee__ : 36
__ee_e : 9
_e____ : 13
_e___e : 13
_e__e_ : 160
_e__ee : 2
_e_e__ : 59
_e_e_e : 7
_e_ee_ : 3
_ee___ : 6
_ee__e : 5
_ee_e_ : 34
e____e : 1
e___e_ : 5
e___ee : 2
e__e__ : 20
e__ee_ : 2
e_e___ : 9
e_e__e : 1
e_e_e_ : 3
keys = 29

18

letters not yet guessed: bcd fgh jklmn pqrst vwxyz
misses remaining = 4
_ e _ _ e _
(word is tested)
possible words: 160
letter> s
_e__e_ : 100
_e__es : 16
_e_se_ : 11
_e_ses : 3
_es_e_ : 13
esse : 5
_esses : 1
se__e_ : 7
se__es : 2
se_se_ : 1
se_ses : 1
keys = 11
you missed: s not in word

letters not yet guessed: bcd fgh jklmn pqr t vwxyz
misses remaining = 3
_ e _ _ e _
(word is kepler)
possible words: 100
letter> r
_e__e_ : 45
_e__er : 32
_e_re_ : 1
_er_e_ : 8
_er_er : 6
erre : 1
_errer : 1
re__e_ : 3
re__er : 2
re_re_ : 1
keys = 10
you missed: r not in word

letters not yet guessed: bcd fgh jklmn pq t vwxyz
misses remaining = 2
_ e _ _ e _
(word is wedded)

19

possible words: 45
letter> d
_e__e_ : 11
_e__ed : 20
_e_de_ : 2
_e_ded : 4
_ed_e_ : 1
_ed_ed : 2
_edded : 2
de__e_ : 1
de__ed : 2
keys = 9

letters not yet guessed: bc fgh jklmn pq t vwxyz
misses remaining = 2
_ e _ _ e d
(word is belted)
possible words: 20
letter> l
_e__ed : 10
_el_ed : 4
_elled : 5
le__ed : 1
keys = 4
you missed: l not in word

letters not yet guessed: bc fgh jk mn pq t vwxyz
misses remaining = 1
_ e _ _ e d
(word is vented)
possible words: 10
letter> t
_e__ed : 4
_e_ted : 1
_etted : 4
te_ted : 1
keys = 4
you missed: t not in word
you're hung!!
word was begged
you made 10 guesses with 8 misses

Do you want to play again? y or n> y

20

Which mode do you want: (d)ebug or (p)lay: p
How many letters in the word you'll guess: 7
How many misses do you want? Hard has 8 and Easy has 12
(h)ard or (e)asy> h

letters not yet guessed: abcdefghijklmnopqrstuvwxyz
misses remaining = 8
_ _ _ _ _ _ _
letter> e
you missed: e not in word

letters not yet guessed: abcd fghijklmnopqrstuvwxyz
misses remaining = 7
_ _ _ _ _ _ _
letter> a
you missed: a not in word

letters not yet guessed: bcd fghijklmnopqrstuvwxyz
misses remaining = 6
_ _ _ _ _ _ _
letter> i

letters not yet guessed: bcd fgh jklmnopqrstuvwxyz
misses remaining = 6
_ _ _ _ i _ _
letter> o
you missed: o not in word

letters not yet guessed: bcd fgh jklmn pqrstuvwxyz
misses remaining = 5
_ _ _ _ i _ _
letter> u

letters not yet guessed: bcd fgh jklmn pqrst vwxyz
misses remaining = 5
_ u _ _ i _ _
letter> m
you missed: m not in word

letters not yet guessed: bcd fgh jkl n pqrst vwxyz
misses remaining = 4
_ u _ _ i _ _
letter> a

21

you already guessed that
letter> n

letters not yet guessed: bcd fgh jkl pqrst vwxyz
misses remaining = 4
_ u _ _ i n _
letter> g

letters not yet guessed: bcd f h jkl pqrst vwxyz
misses remaining = 4
_ u _ _ i n g
letter> c
you missed: c not in word

letters not yet guessed: b d f h jkl pqrst vwxyz
misses remaining = 3
_ u _ _ i n g
letter> d
you missed: d not in word

letters not yet guessed: b f h jkl pqrst vwxyz
misses remaining = 2
_ u _ _ i n g
letter> r
you missed: r not in word

letters not yet guessed: b f h jkl pq st vwxyz
misses remaining = 1
_ u _ _ i n g
letter> s
you missed: s not in word
you're hung!!
word was pulping
you made 12 guesses with 8 misses

Do you want to play again? y or n> n
You won 0 game(s) and lost 2

Submitting and Grading

1.​ Log in to Gradescope.
2.​ Under the CompSci 101 dashboard, click Assignment 5: Clever Hangman.

22

3.​ Click Submit Programming Assignment, click “Click to browse”, and select the required
file. Click “Browse Files” again to select and submit more files.

4.​ Once the file is selected, click Upload.

You can submit more than once. Your last submission will be graded.
After submitting, you'll need to fill out the reflect form linked here.
Remember to complete the reading quiz on sakai.

Autograded portion [41 points]
●​ [2] Functions from Hangman.py (same as before)

○​ [1] handleUserInputDifficulty
■​ Gives the user the option for easy or hard mode
■​ Returns the correct value

○​ [1] handleUserInputLetterGuess
■​ Prints out the value in the displayString variable
■​ Takes in user input to guess a letter
■​ Returns the user's guessed letter
■​ Checks if the user entered a repeated letter and prompts the user to enter

a new letter until a non-repeated letter is entered
●​ [39] Functions new to/modified in CleverHangman.py

○​ [6] createDisplayString
■​ Letters not yet guessed are in sorted order
■​ Returns a string that contains the letters not yet guessed, hangmanWord,

misses remaining
■​ Returned string is in the correct format

○​ [3] handleUserInputDebugMode
■​ Gives the user the option for debug or play mode
■​ Returns bool representing whether game will be played debug mode

○​ [3] handleUserInputWordLength
■​ Prompts user for the length of the word to be guessed
■​ Returns int specified by user

○​ [4] createTemplate(currentTemplate, letterGuess, word)
■​ Takes three parameters currentTemplate (str), letterGuess (str), and word

(str)

■​ Returns correct string representing the updated template
○​ [11] getNewWordList(currentTemplate, letterGuess, wordList)

■​ Takes three parameters currentTemplate(str), letterGuess (str), and
wordList (list of str)

■​ Returns correct tuple (string, list of str) representing the longest template
and list of words that fit in this template, respectively

■​ The templates and counts are in alphabetical order
■​ Correctly breaks ties when multiple templates have identical lengths for

corresponding word lists
○​ [1] processUserGuessClever

■​ Updates the value of missesLeft

23

https://docs.google.com/forms/d/e/1FAIpQLSdad7qXu6aL8XqFTTQVFGnc0Mh_fKVJPl-Bdp52JCul6JAS9w/viewform?usp=sf_link

■​ Updates whether or not the user guessed wrong
■​ Returns the correct values in a list

○​ [6] runGame
■​ Calls the other functions to run the game
■​ Takes in a single parameter with the filename

○​ [5] debug mode
■​ Shows secret word
■​ Shows number of possible words

Hand-graded portion [9 points]
●​ [6] Hand-Running CleverHangman.py: Single Game

○​ [1] Game begins without errors
○​ [1] Possible to get through a whole game without errors
○​ [1] Prints correct single-game summary statistics
○​ [1] Game consistently works properly
○​ [2] Prints correct output in debug mode

●​ [1] Hand-Running CleverHangman.py: Multiple-Game Session
○​ [1] Prompts user if they want to play again, follows the user’s request, and prints

correct multi-game summary statistics
●​ [2] Rest of submission

○​ [1] point for name at the top and docstring comments (including for any
optional helper functions)

○​ [1] point for submitting a reflect

24

	Assignment 5: Clever Hangman
	CompSci 101 Fall 2020
	
	Overview
	Completing the Assignment
	Requirements
	Requirements from Hangman
	Requirements New to Clever Hangman
	Overview of Changes to Functions

	Hangman Functions To Modify
	createDisplayString(lettersGuessed, missesLeft, hangmanWord)
	runGame(filename)

	New Functions to Implement
	handleUserInputDebugMode()
	handleUserInputWordLength()
	createTemplate(currTemplate, letterGuess, word)
	getNewWordList(currTemplate, letterGuess, wordList, debug)
	processUserGuessClever(guessedLetter, hangmanWord, missesLeft)

	Understanding How Functions Fit Together
	Note on Debug Mode

	Making the Program Clever and Hard to Win
	Writing Function getNewWordList
	Creating the Dictionary
	Printing the Dictionary Contents in Debug Mode

	Implementing and Debugging Tips
	Example Clever Hangman Runs
	Session with 2 Games

	Submitting and Grading
	Autograded portion [41 points]
	Hand-graded portion [9 points]

