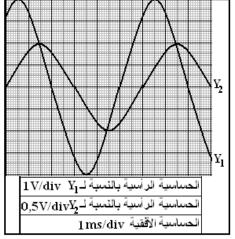
__ التمرين 1 __

نركب على التوالي موصلا أوميا مقاومته $R=20\Omega$ مع مكثف سعته C ووشيعة معامل تحريضها L ومقاومتها V نطبق بين مربطي ثنائي القطب المحصل عليه توترا متناوبا جيبيا . على راسم التنبذب نعاين كلا من التوتر u(t) بين مربطي المولد عبر المدخل V_1 والتوتر v_1 بين مربطي الموصل الأومي عبر المدخل v_2 .

- $u_R(t)$ و u(t) عدد القيم الفعالة لكل من التوترين u(t)
- 3) فسر لماذا يمكن اعتبار أن المنحنى المحصل عليه في المدخل $extbf{Y}_2$ يمثل تغيرات شدة التيار المار في الدارة ؟
 - 4) أحسب القيمة الفعالة لشدة التيار المار في الدارة .
- 5) حدد من بين المقدارين u(t) و i(t) أيهما متقدم في الطور ، أحسب القيمة المطلقة لطور التوتر بالنسبة لشدة التيار


التمرين 2 _

L=32mH ومن متوالية من مولد GBF ومن موصل أومي مقاومته $R=50\Omega$ ومن موصل تحريضها $i(t)=I_m\cos(\omega t)$ ومقاومتها $i(t)=I_m\cos(\omega t)$ ومقاومتها $r=50\Omega$

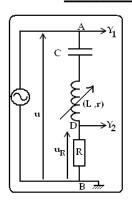
نعاين على شاشة كاشف التذبذب كلا من التوتر u(t) بين مربطي المولد عبر المدخل Y_1 والتوتر $u_R(t)$ بين مربطي الموصل الأومي

عبر المدخل $oldsymbol{Y}_2$ ، فنحصل على المنحنيين التاليين :

- $U_{\it Rm}$ و القيم القصوية $|m{arphi}|$ محدد مبيانيا : الدور $|m{ au}|$ ، القيمة المطلقة للطور $|m{arphi}|$ و القيم القصوية $|m{ au}|$. (2) أحسب ممانعة الدارة واستنتج سعة المكثف .
 - i(t) و التيار u(t) التوتر u(t) التيار (3
- ${\cal C}_0$ فيصبح القيمة الفعالة للتوتر ${\it u}(t)$ والتردد ونعطي لسعة المكثف القيمة في الطور .
 - . المكثف الميدة \boldsymbol{C}_0 السعة المكثف (1.4
 - $m{I}_0$ أحسب القيمة الفعالة لشدة التيار (2.4
 - نم معامل الجودة . ماذا تستنتج ؟ $\Delta \omega$ ثم معامل الجودة . ماذا تستنتج ؟
- 5) بين أن القدرة المتوسطة المستهلكة من طرف ثنائي القطب RLC تتبدد بمفعول جول

الحساسية الرأسية بالنسبة لـ 1V/div Y_I

الحساسية الرأسية بالنسبة لـ0.5V/divX


الحساسية الأقفية 0.2ms/div

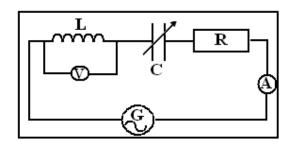
التمرين 3

تتكون الدارة الكهربائية التالية من:

- $oldsymbol{R}$ موصل أومي مقاومته
- $C = 10 \mu F$ مكثف سعته
- ر وشیعة مقاومتها r ومعامل تحریضها L قابل للتغییر $oldsymbol{\prime}$
- $u(t) = U_{_m} \cos(\omega t + oldsymbol{arphi})$ يزود الدارة بتوتر متناوب جيبي G

i(t) يمر في الدارة تيار كهربائي متناوب شدته اللحظية

- $oldsymbol{u}$ لتكن $oldsymbol{Z}$ ممانعة ثنائي القطب $oldsymbol{a}$ و $oldsymbol{\phi}$ بالنسبة لـ $oldsymbol{i}(t)$. أعط تعبير كل من $oldsymbol{z}$ و $oldsymbol{q}$
 - 2) بالنسبة لقيمة معينة L_0 لمعامل التحريض للوشيعة، نشاهد على شاشة راسم التذبذب الشكل التالي: (1.2) ما الظاهرة التي يبرزها هذا الشكل ؟
 - - $u_R(t)$ حدد المنحنى الذي يمثل (2.2
- : عين قيمة الدور T للتوتر u(t) ، نعطى الحساسية الرأسية للمدخلين u(t) والحساسية الأفقية u(t) $5ms.div^{-1}$



- بنيس بواسطة فولتمتر التوتر بين مربطى المكثف فيشير إلى القيمة 45V
 - أ) أوجد شدة التيار الفعالة و $I_{
 m 0}$ ثم استنتج المقاومة R للموصل الأومى .
- ب) عين قيمة الممانعة Z_0 اثنائي القطب AB. استنتج قيمة المقاومة Z_0 للوشيعة .
 - ج) أو جد قيمة L_0 معامل التحريض للوشيعة .
 - $L_1 < L_0$ نختار قيمة L_1 لمعامل التحريض للوشيعة بحيث (3
 - ي على جوابك ، u(t) أيهما متقدم في الطور u(t) أم i(t) ؛ على جوابك .
 - L_{1} احسب $L_{1}=L_{0}-rac{Z_{0}}{\omega}$ بين أن $|arphi|=rac{\pi}{4}$ علما أن (2.3)
 - $oldsymbol{Z}_1$ استنتج تعبير ممانعة الدارة $oldsymbol{Z}_1$ بدلالة و (3.3)

____ التمرين 4

تتكون الدارة الممثلة في الشكل المقابل من:

- ر موصل أومى مقاومته $lap{r}$
- مكثف سعته C قابل للضبط
- رشيعة معامل تحريضها L ومقاومتها مهملة وشيعة معامل و
- المبير متر A يمكن من قياس الشدة الفعالة لشدة التيار المار في الدارة $m{arphi}$
- يزود الدارة بتوتر جيبي $u(t)=U\sqrt{2}\cos(\omega t+\varphi)$ مولد $u(t)=U\sqrt{2}\cos(\omega t+\varphi)$ مولد $u(t)=U\sqrt{2}\cos(\omega t+\varphi)$ $i(t) = I\sqrt{2}\cos(\omega t)$

- 1) أوجد تعبير كلا من:
- التوتر $u_R(t)$ بين مربطي الموصل الأومى .
 - بين مربطي المكثف $\boldsymbol{u}_{c}\left(t\right)$ التوتر
 - بین مربطی الوشیعة ب $u_L(t)$ بین مربطی الوشیعة ب
- نضيط سعة المكثف على القيمة C_1 يحيث تكون الدارة كثافية (2)

 C_{1} و R التوتر إنشاء فرينيل المتعلق بالممانعات واستنتج تعبير الطور ϕ للتوتر u(t) بالنسبة لشدة التيار المتعلق بالممانعة الدارة .

I=0,625A و U=110V و $R=100\Omega$ علما أن Q=110V علما أن Q=110V و استنتج قيمة Q=110V

 $\omega = 100\pi rad.s^{-1}$ يشير الفولتمتر إلى القيمة 0.77 أوجد قيمتى 0.5 أوجد قيمتى أوجد قيمتى 0.5

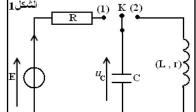
 $^{\circ}$. $^{\circ}$ فنحصل على الرنين عند القيمة $^{\circ}$ فنحصل على الرنين عند (3

. أوجد قيمتي ${m C}_0$ و الشدة الفعالة للتيار الكهربائي المار عبر الدارة ${m C}_0$

ي مذه الحالة و i(t) و i(t) عبيري u(t) عبيري 3-2

Www.AdrarPhysic.Com

2 ^{éme} Bac (PC)


التذبذبات القسرية في دارة RLC متوالية

Www.AdrarPhysic.Com

التمرين 1

لتحديد معامل التحريض L لوشيعة مقاومتها r مستعملة في مكبر الصوت. ننجز تجربة على مرحلتين باستعمال التركيب التجريبي الممثل في الشكل L .

المرحلة الأولي: نحدد قيمة السعة C لمكثف بالدراسة التجريبية لشحنه بواسطة مولد كهربائي مؤمثل قوته الكهرمحركة E = 6V

 $m{L}$ المرحلة الثانية: ندرس تفريغ هذا المكثف في الوشيعة لتحديد قيمة معامل التحريض $m{
u}$

 $\pi^2 = 10$ نأخذ <u>10 تحديد</u> سعة المكثف

المكثف غير مشحون ، نؤرجح قاطع التيار K (الشكل1) إلى الموضع (1) عند لحظة نعتبر ها أصلا للتواريخ (t=0) ، فيشحن المكثف عبر موصل أومي مقاومته $R=100\Omega$ بنعاين بواسطة راسم التذبذب ذي ذاكرة التوتر u_c بين مربطي المكثف ، فنحصل على المنحنى الممثل في الشكل2 .

. u_C أثبت المعادلة التفاضلية التي يحققها التوتر u_C

حل هذه المعادلة التفاضلية هو $u_{c}=A(1-e^{\frac{\tau}{\tau}})$ ؛ أوجد تعبير $u_{c}=A(1-e^{\frac{\tau}{\tau}})$ و τ بدلالة برامترات الدارة .

يمثل المستقيم (T) المماس للمنحنى الشكل 2 ، قيمة $u_{C}=f(t)$ عند اللحظة t=0 الستنتج، اعتمادا على منحنى الشكل 2 ، قيمة السعة C المكثف .

2) تحديد معامل التحريض للوشيعة:

المكثف مشحون . نؤرجح ،عند لحظة نعتبر ها أصلا جديدا للتواريخ (t=0) ، قاطع التيار K (الشكل1) إلى الموضع (2) ونعاين بنفس الطريقة تطور التوتر u_c بين مربطي المكثف خلال الزمن . فنحصل على المنحنى الممثل في الشكل3 .

. اثبت المعادلة التفاضلية التي يحققها التوتر $oldsymbol{u}_{c}$ بين مربطي المكثف (1.2

 $rac{du_C}{dt}$ و u_C و u_C عبر عن الطاقة الكلية u_C للدارة بدلالة يا u_C و u_C عبر عن الطاقة الكلية و u_C

 $\frac{dE_T}{dt} = -r.i^2$ باستعمال المعادلة التفاضلية بين أن : $\frac{dE_T}{dt}$ عيث i شدة التيار المار في الدارة عند اللحظة t و t مقاومة (3.2)

برسيك. 4.2) نعتبر في هذه التجربة أن شبه الدور يساوي الدور الخاص للدارة . أحسب ، اعتمادا على منحنى الشكل3 ، معامل التحريض للوشيعة . 3) تحديد قيمة معامل التحريض للوشيعة بطريقة أخرى:

u نطبق بين مربطي ثنائي القطب (D) المكون من الوشيعة السابقة ومكثف سعته $C_0=10\mu F$ مركبين على التوالي توترا جيبيا قيمته الفعالة V=6V ونغير تدريجيا تردده N . نلاحظ أنه عندما يأخذ التردد القيمة U=6V ، تأخذ شدة التيار الفعالة $I_0 = 0.48A$ للتيار قيمة قصوى

. 1.3) أحسب قيمة معامل التحريض L وقيمة المقاومة r للوشيعة .

 u_b التوتر اللحظي بين مربطي الوشيعة ، أوجد قيمة الطور ϕ للتوتر اللحظي بين مربطي الوشيعة ، أوجد ϕ

Www.AdrarPhysic.Com