
==============

Key Management

==============

Problem Space - What is key management, why is it needed // Introductions

We protect sensitive information in cloud deployments using various applications of

cryptography. Simple examples are encrypting data at rest or signing an image to prove that it

has not been tampered with. In all cases these cryptographic capabilities require some sort of

key material in order to operate.

Key Management, often referred to as “secrets management” describes a group of technologies

that are designed to protect key materials within a software system. Traditionally key

management involves deployment of Hardware Security Modules (HSM). These are typically devices

that have been physically hardened against tampering. Physical HSM are often expensive to

deploy and difficult to scale.

As technology has advanced, the number of “secret things” that need to be protected has

increased beyond key materials to include certificate pairs, API keys, system passwords,

signing keys etc. This increase has created a need for a more scalable approach to key

management and resulted in the creation of a number of software services that provide scalable

dynamic key management. In this chapter we briefly describe the services that exist today and

focus on those that are able to be integrated into OpenStack clouds.

Summary of existing technologies

Fixed/Hardcoded keys - It is known that some services have the option to specify keys in their

configuration files. This is the least secure way to operate and is not recommended for any

sort of production operation.

Hardware security modules - HSMs can come in multiple forms. The traditional device is a rack

mounted appliance such as a `here

<https://vakwetu.wordpress.com/2015/11/30/barbican-and-dogtagipa/>`_.

Software Key Managers - [Vault, KeyWhiz, Barbican, Citadel, Confidant, Conjur, EJSON, Knox,

Red October]

 KeyWhiz

 Vault

 Castellan

 Barbican

Integration with other projects

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Barbican is integrated with several OpenStack features, either directly or as a back end of 

Castellan. 

 

Image signature verification 

---------------------------- 

Verification of image signatures assures the user that uploaded them that the image has not 

been replaced or changed. The image signature verification feature uses Castellan. The image 

signature and certificate UUID is uploaded along with the image to the Glance image service. 

Glance can verify the signature after retrieving the certificate from the key manager. When 

https://vakwetu.wordpress.com/2015/11/30/barbican-and-dogtagipa/


the image is booted, the Nova compute service can also verify the signature after it retrieves 

the certificate from the key manager. For more details, see the `Trusted Images documentation​
<https://docs.openstack.org/security-guide/instance-management/security-services-for-instances

.html#trusted-images/>`__. 

 

Volume encryption 

----------------- 

The volume encryption feature provides encryption of data-at-rest using Castellan. When a user 

creates an encrypted volume type and creates a volume using that type, the Cinder block 

storage service requests the key manager creates a key to be associated with that volume. When 

the volume is attached to an instance, Nova compute retrieves the key.​
  https://docs.openstack.org/security-guide/tenant-data/data-encryption.html 

 

https://docs.openstack.org/ocata/config-reference/block-storage/volume-encryption.html 

 

Ephemeral disk encryption 

------------------------- 

 

Sahara 

------ 

Sahara generates and stores several passwords during the course of operation. To harden 

sahara’s usage of passwords it can be instructed to use an external key manager for storage 

and retrieval of these secrets. To enable this feature there must first be an OpenStack Key 

Manager service deployed within the stack. 

 

With a Key Manager service deployed on the stack, sahara must be configured to enable the 

external storage of secrets. Sahara uses the castellan library to interface with the OpenStack 

Key Manager service. This library provides configurable access to a key manager. For detail 

see: 

 

https://docs.openstack.org/developer/sahara/userdoc/advanced.configuration.guide.html#external

-key-manager-usage 

 

Magnum 

------ 

 

Octavia/LBaaS 

------------- 

The LBaaS (Load Balancer as a Service) feature of Neutron and the Octavia Project need 

Certificates and their private keys to provide load balancing for TLS connections. They 

Can use Barbican to store this sensitive information. 

 

https://wiki.openstack.org/wiki/Network/LBaaS/docs/how-to-create-tls-loadbalancer 

https://docs.openstack.org/developer/octavia/guides/basic-cookbook.html#deploy-a-tls-terminate

d-https-load-balancer 

 

Swift 

----- 

 

 

https://docs.openstack.org/security-guide/instance-management/security-services-for-instances.html#trusted-images
https://docs.openstack.org/security-guide/instance-management/security-services-for-instances.html#trusted-images
https://docs.openstack.org/security-guide/tenant-data/data-encryption.html
http://docs.openstack.org/developer/castellan/
https://docs.openstack.org/developer/octavia/guides/basic-cookbook.html#deploy-a-tls-terminated-https-load-balancer
https://docs.openstack.org/developer/octavia/guides/basic-cookbook.html#deploy-a-tls-terminated-https-load-balancer


Barbican Role Based Access Control 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


Secret Store Back-ends

 ~~~~~~~~~~~~~~~~~~~~~~   

The Key Manager service has a plugin architecture that allows the deployer to  store secrets in 

one or more secret stores.  Secret stores can be software-based , such as a software token,  or 

hardware devices such as a hardware security  module (HSM).   This section describes the plugins 

that are currently available  and discusses the security posture of each one. Plugins are 

enabled and configured with settings in the ``/etc/barbican/barbican.conf`` configuration 

File.  

 

There are two types of plugins: crypto plugins and secret store plugins. 

 

 

Crypto Plugins 

 -------------- 

Crypto plugins store secrets as encrypted blobs within the  Barbican database. The plugin is 

invoked to encrypt the secret, on secret  storage, and decrypt the secret, on secret retrieval. 

There are two flavors of storage plugins currently available: the Simple Crypto plugin and the 

PKCS#11 crypto plugin.  

 

Simple Crypto Plugin 

--------------------  

The simple crypto plugin is configured by default in barbican.conf. This plugin uses single 

symmetric key (kek - or 'key encryption key') - which is stored in plain text in the 

``barbican.conf`` file to encrypt  and decrypt all secrets. As such, this plugin is completely 

insecure and is only suitable for development and testing, it must not be used for production 

deployments. 

 

PKCS#11 Crypto Plugin 

---------------------  

The PKCS#11 crypto plugin can be used to interface with a Hardware Security Module (HSM)  using 

the PKCS#11 protocol. Secrets are encrypted (and decrypted on retrieval) by a project specific 

Key Encryption Key (KEK) which resides in the HSM. Since a different KEK is used for each 

project, and since the KEKs are stored inside an HSM (instead of in plaintext in the 

configuration file) the PKCS#11 plugin is much more secure than the simple crypto plugin. It 

is the most popular back end amongst Barbican deployments.   

 

Secret Store Plugins 

 -------------------- 

Secret store plugins interface with secure storage systems to store the secrets within 

those systems. There are two types of secret store plugins: the KMIP plugin and the 

Dogtag plugin.  

 

KMIP Plugin 

----------- 

The KMIP secret store plugin is used to communicate with a KMIP device, such as 



a Hardware Security Module (HSM). The secret is securely stored in the KMIP device 

directly, rather than in the Barbican database. The Barbican database maintains a 

reference to the secret's location for later retrieval.   The plugin can be configured to 

authenticate to the KMIP device using either  a username and password, or using a client 

certificate. This information is stored in the Barbican configuration file. 

 

  Dogtag Plugin 

-------------  

The Dogtag secret store plugin is used to communicate with Dogtag.   Dogtag is the upstream 

project corresponding to the Red Hat Certificate System, a Common Criteria/FIPS certified PKI 

solution that contains a Certificate Manager (CA)  and a Key Recovery Authority (KRA) which is 

used to securely store secrets.  The KRA stores secrets as encrypted blobs in its internal 

database, with the  master encryption keys being stored either in a software-based NSS security 

 database, or in a Hardware Security Module (HSM).   The software-based NSS database 

configuration provides a secure option for  deployments that do not wish to use a HSM.   The KRA 

is a component of FreeIPA, therefore it is possible to configure the plugin  with a FreeIPA 

server. More detailed instructions on how to set up Barbican with FreeIPA  are provided `here 

<https://vakwetu.wordpress.com/2015/11/30/barbican-and-dogtagipa/>`_. 

 

 

Architecture Considerations 

 

Threat Analysis  

~~~~~~~~~~~~~~~ 

The barbican team worked with the OpenStack Security Project to perform a security review of a

best practise Barbican deployment. The objective of the security review is to identify

weaknesses and defects in the design and architecture of services, and propose controls or

fixes to resolve these issues.

The barbican threat analysis identified eight security findings and two recommendations to

improve the security of a barbican deployment. These results can be reviewed in the security

analysis repo, along with the barbican architecture diagram and architecture description page.

<link>.

============

Case studies

============

Earlier in :doc:`../introduction/introduction-to-case-studies` we

introduced the Alice and Bob case studies where Alice is deploying a

private government cloud and Bob is deploying a public cloud each with

different security requirements. Here we discuss how Alice and Bob

would consider the appropriate key manager deployment decisions.

Alice's private cloud

~~~~~~~~~~~~~~~~~~~~~ 

 

https://vakwetu.wordpress.com/2015/11/30/barbican-and-dogtagipa/


Alice chooses the PKCS#11 crypto plugin for her barbican deployment. 

 

She only has a small HSM that does not have enough capacity to store 

all her cloud's secrets.  She does not want to store the KEK in plaintext 

in a configuration file, so the perfect compromise is the PKCS#11 plugin. 

 

She further hardens her deployment by setting strict file permissions 

on her barbican configuration files. 

 

 

Bob's public cloud 

~~~~~~~~~~~~~~~~~~ 


Bob already has a deployment of Dogtag in his data center. He wants to

leverage this investment to ensure that all of his client's key are

securely protected. He chooses to use the Dogtag plugin to store his

cloud's secrets in Dogtag.

He also further hardens his deployment by setting strict file permissions

on her barbican configuration files.

.. _key_mgr_checklist:

=========

Checklist

=========

.. _check_key_mgr_01:

Check-Key-Manager-01: Is user/group ownership of config files set to root/barbican?

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

Configuration files contain critical parameters and information required 

for smooth functioning of the component. If an unprivileged user, either 

intentionally or accidentally, modifies or deletes any of the parameters or 

the file itself then it would cause severe availability issues resulting in a 

denial of service to the other end users. Thus user ownership of such critical 

configuration files must be set to root and group ownership must be set to 

barbican. 

 

Run the following commands: 

 

.. code:: console 

 

   $ stat -L -c "%U %G" /etc/barbican/barbican.conf | egrep "root barbican" 

   $ stat -L -c "%U %G" /etc/barbican/barbican-api-paste.ini | egrep "root barbican" 

   $ stat -L -c "%U %G" /etc/barbican/policy.json | egrep "root barbican" 

 



**Pass:** If user and group ownership of all these config files is set 

to root and barbican respectively. The above commands show output of root barbican. 

 

**Fail:** If the above commands do not return any output as the user 

and group ownership might have set to any user other than root or any group 

other than barbican. 

 

.. _check_key_mgr_02: 

 

Check-Key-Manager-02: Are strict permissions set for configuration files? 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


Similar to the previous check, it is recommended to set strict access

permissions for such configuration files.

Run the following commands:

.. code:: console

 $ stat -L -c "%a" /etc/barbican/barbican.conf

 $ stat -L -c "%a" /etc/barbican/barbican-api-paste.ini

 $ stat -L -c "%a" /etc/barbican/policy.json

Pass: If permissions are set to 640 or stricter. The permissions of 640

translates into owner r/w, group r, and no rights to others i.e. "u=rw,g=r,o=".

Note that with :ref:`check_key_mgr_01` and permissions set to 640, root has

read/write access and barbican has read access to these configuration files. The

access rights can also be validated using the following command. This command

will only be available on your system if it supports ACLs.

.. code:: console

 $ getfacl --tabular -a /etc/barbican/barbican.conf

 getfacl: Removing leading '/' from absolute path names

 # file: etc/barbican/barbican.conf

 USER root rw-

 GROUP barbican r--

 mask r--

 other ---

Fail: If permissions are not set to at least 640.

.. _check_key_mgr_03:

Check-Key-Manager-03: Is OpenStack Identity used for authentication?

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

OpenStack supports various authentication strategies like noauth and keystone. 

If the '``noauth``' strategy is used then the users could interact with 

OpenStack services without any authentication. This could be a potential risk 



since an attacker might gain unauthorized access to the OpenStack components. 

Thus it is strongly recommended that all services must be authenticated with 

keystone using their service accounts. 

 

**Pass:** If the parameter ``authtoken`` is listed under the 

``pipeline:barbican_api`` section in ``barbican-api-paste.ini``. 

 

**Fail:** If the parameter ``authtoken`` is missing under the 

``pipeline:barbican_api`` section in ``barbican-api-paste.ini``. 

 

.. _check_key_mgr_04: 

 

Check-Key-Manager-04: Is TLS enabled for authentication? 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


OpenStack components communicate with each other using various protocols and

the communication might involve sensitive or confidential data. An attacker may

try to eavesdrop on the channel in order to get access to sensitive

information. Thus all the components must communicate with each other using a

secured communication protocol.

Pass: If value of parameter ``auth_protocol`` under

``[keystone_authtoken]`` section in ``barbican.conf`` is set to

``https``, or if value of parameter ``identity_uri`` under

``[keystone_authtoken]`` section in ``barbican.conf`` is set to

Identity API endpoint starting with ``https://`` and value of parameter

``insecure`` under the same ``[keystone_authtoken]`` section in the same

``barbican.conf`` is set to ``False``.

Fail: If value of parameter ``auth_protocol`` under

``[keystone_authtoken]`` section in ``barbican.conf`` is set to

``http``, or if value of parameter ``identity_uri`` under

``[keystone_authtoken]`` section in ``barbican.conf`` is not set

to Identity API endpoint starting with ``https://`` or value of parameter

``insecure`` under the same ``[keystone_authtoken]`` section in the same

``barbican.conf`` is set to ``True``.

