Science of Technology Class Syllabus **Instructor: Sarah Sarton** Contact: <u>ssarton@greenvilleschools.us</u> Classroom: 505 ### **Course Description:** This STEAM course integrates Science, Technology, Engineering, Arts, and Mathematics to foster creativity, problem-solving, and innovation. Students will work individually and in teams to complete hands-on projects that apply real-world concepts through inquiry-based learning, design thinking, and collaboration. It is a semester-long course where students get to dive into hands-on activities that really help teach them how to be independent learners in the classroom. This is a progressive course, meaning we add on to their knowledge and skills as we move through each unit. #### Course Goals: #### Students will: - Develop critical thinking and problem-solving skills. - Understand how STEAM connects to them and their world. - Gain confidence using technology and engineering tools. - Learn the design process from concept to prototype. - Practice collaboration, creativity, and communication. # Units & Projects | Unit 1 - Instant Design
Challenge (Week1-2) | Introduce the design process to students Work in teams using a decision matrix to show their thinking Reflect on team collaboration to collectively come up with a set of team rules for the year | |--|---| | Unit 2 - Applied
Chemistry (Weeks 3-4) | Properties of matter (states, chemical/physical changes) Polymer science and reactions (yogurt and ice cream making) Material science basics Chemical safety Project: Oil Spill Clean-up Simulation | | Unit 3 -
Nanotechnology
(Weeks 5–8) | Introduction to nanoscience Scales and measurement (macro vs. nano) Current and emerging nanotechnologies Scientific modeling Project: Nanotechnology on Fabrics Experiment | | Unit 4 - Applied
Physics (Weeks 9-15) | Study simple machines and different types of energy. Understand potential and kinetic energy Build, test, and evaluate models Project: Rube Goldberg Machine creating | # Unit 5 - Careers in the Field - Identify and reflect on personal strengths, transportable skills, and opportunities for growth. - Identify jobs of interest based on personal strengths and interests - Research career opportunities and complete a career exploration and present findings for the class. ### **Materials Needed:** - Notebook - Pencils/pens ### **Classroom Expectations:** - Be respectful and open to others' ideas. - Be safe with tools and materials. - Take risks, make mistakes, and learn from them. - Stay engaged and contribute to your team. - Be curious and engaged. - Collaborate respectfully with peers. - Complete assignments on time.