

Tecton Enrichment Handler for Beam
Proof of Concept: #36062
Tracking Beam Issue: #35046
Last updated: Sep 12, 2025
Authors: Mohamed Awnallah
Status: Draft > Current > Needs update > Obsolete

Overview
The Tecton Feature Store Enrichment Handler for Apache Beam enables streaming and batch
pipelines to enrich data with features from Tecton's online feature stores. This component
seamlessly integrates Tecton's capabilities into Beam data processing workflows, allowing
pipelines to retrieve pre-computed or real-time features for various machine learning use
cases.

Objective
Build a configurable and efficient Beam Enrichment Handler for Tecton that supports enriching
data with features from Tecton's online feature stores. It should enable seamless integration of
feature retrieval with Beam pipelines for real-time serving.

Background
Beam currently has Vertex AI and Feast feature store enrichment handlers [1] [2], which enable
pipelines to retrieve features for enrichment. By integrating Tecton Feature Store enrichment

mailto:mohamedmohey2352@gmail.com
https://github.com/apache/beam/pull/36062/files
https://github.com/apache/beam/issues/35046

handler with Beam, this will enable existing Tecton users to leverage Beam’s powerful data
processing capabilities for their feature engineering ML pipelines, creating a natural pathway
for adopting Beam in feature engineering ML pipelines.

Design and Implementation
The Tecton Feature Store Enrichment Handler for Beam is designed to efficiently retrieve
features from Tecton's online feature store. This component will leverage Tecton's client SDKs
to interact with the online feature store APIs, enabling Beam pipelines to enrich incoming data
with real-time features. The handler will transform Beam elements to and from a format
compatible with Tecton's online feature serving APIs and batch queries to optimize
performance.

Constraints

-​ Online Feature Retrieval Scope: The Tecton Feature Store Enrichment Handler for Beam
is currently limited to retrieving features solely from Tecton's online feature store.

Client SDK Selection
Tecton provides two Client SDKs: tecton-cli (lightweight) [3] and tecton (heavy-weight) [4]. For
online feature retrieval, tecton-cli is sufficient and provides the necessary functionality. In case of
tecton-cli python package to be added as extra dependency for alignment with Beam vision as
seen in Beam 3.0.0 Milestone 1 (“Consider reducing dependencies in core, moving more to
separate/extra packages”) [5].

Connection Parameters
The Tecton Feature Store Enrichment Handler for Beam defines its configuration through the
TectonConnectionConfig data class, which encapsulates all necessary parameters for connecting
to Tecton’s online features store. This configuration is passed to the
TectonFeatureStoreEnrichmentHandler.Here's the updated "Enrichment Parameters" section
based on the provided TectonFeaturesRetrievalConfig data class.

Parameter Type Description Default

url str The URL of the
Tecton instance to
connect to.

 Required

default_workspace_name str The name of the
workspace
containing the
feature service.

 None

api_key str The API key for
authenticating with
the Tecton instance.

 Required

kwargs Dict\[str… Additional keyword
arguments for
connection
operations. Enables
forward
compatibility.

 None

Enrichment Parameters
The Tecton Feature Store Enrichment Handler for Beam defines its configuration through the
TectonFeaturesRetrievalConfig data class, which encapsulates all necessary parameters for
retrieving features from a Tecton feature store. This configuration is passed to the
TectonFeatureStoreEnrichmentHandler.

Parameter Type Description Default

feature_service_name str The name of the
feature service
containing the features
to fetch from the
online Tecton feature
store. This should
match a feature
service defined in your
Tecton workspace.

 Required

entity_id str The entity name for
the entity associated
with the features. The
entity_id is used to
extract the entity value
from the input row.
Please provide exactly
one of entity_id or
entity_row_fn.

 "" (Empty St…

entity_row_fn Optional[Ent… A lambda function that
takes an input
beam.Row and returns
a dictionary with a
mapping from the
entity key column
name to entity key
value. It is used to
build/extract the entity
dict for feature
retrieval. Please
provide exactly one of
entity_id or
entity_row_fn.

 None

request_context_map Optional[Ma… Optional mapping of
request context
parameters to pass to
Tecton for feature
computation. These
are typically used for
real-time features that
depend on
request-time data.

 None

workspace_name Optional[str] Optional workspace
name override. If not
provided, uses the
workspace from the
connection config.

 None

allow_partial_results bool Whether to allow
partial results if some
features fail to
compute.

 False

request_options Optional[Re… Optional
RequestOptions for
controlling request
behavior.

 None

metadata_options Optional[Me… Optional
MetadataOptions for
controlling what
metadata is returned.

 MetadataO…

kwargs Dict[str, Any] Additional keyword
arguments for feature
retrieval. Enables
forward compatibility
with future Tecton
feature retrieval
parameters.

 {} (Empty Di…

Metrics
The Tecton Enrichment Handler will expose several metrics using Beam's metrics API, providing
insights into its performance and operational health. These metrics will be accessible through
Beam's monitoring interfaces (e.g., Dataflow Monitoring UI, Flink UI).

Metric Description

features_retrieved

A counter that tracks the total number of
feature sets successfully retrieved from
Tecton, indicating the volume of successful
enrichments.

feature_retrieval_requests

A counter that increments each time a
request for features is sent to the Tecton
online feature store, monitoring API call
frequency.

feature_retrieval_errors

A counter that tracks the number of failed
feature retrieval requests, crucial for
identifying and troubleshooting issues with
feature fetching.

Testing Framework

Infrastructure

For development, a free tier version on explore.tecton.ai can be used to test and evaluate the
Enrichment Handler.

For deployment, a GitHub secret can be used to store the Tecton API key so that integration
tests can be run against a live Tecton instance in the CI environment.

Unit Testing

The unit tests for the Tecton Enrichment Handler focus on validating user-provided data and
verifying the conversion logic from Beam row elements to a format compatible with Tecton.
These tests are isolated and do not require a running Tecton instance, making them fast,
lightweight, and suitable for both local development and continuous integration environments.

Integration Testing

Integration tests validate the behavior of the Tecton Enrichment Handler when interacting with
a live Tecton instance under various real-world conditions. These tests are designed to align
with Beam I/O integration testing standards [5].

Category Scenario Expected Outcome

Feature Retrieval Feature Service not found Error (404)

 Workspace not found Error (404)

 Invalid API Key Error (401/403)

 Entity ID not found for a
given request

Returns row with empty
feature values

 Feature Service exists and
features available

Success (200), returns
enriched data

 Batching behavior under
configured thresholds

Records are grouped,
queries, and batched
responses returned

Notebook Example
A Jupyter notebook example showcasing Tecton Enrichment Handler is planned to be included
as part of the official Beam documentation [16]. This notebook will demonstrate key usage
patterns, configuration options, and end-to-end data ingestion workflows using the Tecton
connector.

It is typically included as a follow-up pull request (PR) to the Enrichment Handler to ensure the
documentation remains functional and aligned with the latest code.

Documentation && Website Updates
To reflect the addition of Tecton Enrichment Handler, updating the release notes of the current
unreleased Beam version to signal that Beam now includes built-in support for Beam as an
enrichment handler.

In a follow-up PR, including a Python example and updating the Beam website to list Tecton I/O
as an officially supported built-in enrichment handler.

References and Resources
[1] Vertex AI Enrichment Handler | Apache Beam Source Code

[2] Feast Enrichment Handler | Apache Beam Source Code

[3] Tecton Client Package | Python Package Index

[4] Tecton Package | Python Package Index

[5] Beam 3.0.0 Milestone 1 | GitHub Project Milestones

[6] I/O Standards | Apache Beam Documentation

https://milvus.io/docs/metric.md
https://github.com/apache/beam/blob/master/sdks/python/apache_beam/transforms/enrichment_handlers/vertex_ai_feature_store.py
https://milvus.io/docs/metric.md
https://github.com/apache/beam/blob/master/sdks/python/apache_beam/transforms/enrichment_handlers/feast_feature_store.py
https://milvus.io/docs/single-vector-search.md
https://pypi.org/project/tecton-client/
https://milvus.io/docs/single-vector-search.md
https://pypi.org/project/tecton/
https://milvus.io/docs/single-vector-search.md
https://github.com/apache/beam/milestone/31
https://beam.apache.org/documentation/io/io-standards/

	
	
	Tecton Enrichment Handler for Beam
	Overview
	Objective
	Background
	Design and Implementation
	Constraints
	Client SDK Selection
	Connection Parameters
	Enrichment Parameters
	Metrics

	Testing Framework
	Infrastructure
	Unit Testing
	Integration Testing

	Notebook Example
	Documentation && Website Updates
	References and Resources

