

Operations Guide 2024
Document version: January 2024

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Contents

1. Background​ 4

1.1. Introduction​ 4
1.2. Creating an Operation​ 5
1.3. Operation library​ 9
1.4. Explanatory note​ 11
Connective Inputs​ 11
Functional Inputs​ 11

2. Connective Operations​ 12
2.1. Inputs​ 12
2.2. Comparison​ 20
2.3. Logic​ 25

3. Functional Operations​ 33
3.1. Math​ 33
3.2. Text​ 37
3.3. Localisation​ 47
Commonly-used locales​ 53
Date format codes​ 54
3.4. Array​ 56

4. Making use of “true”/”false” values​ 61
5. Worked Examples on Dates​ 63

5.1. Long Date​ 63
5.2. Date Format​ 66
5.3. Bespoke Date Format (eg. US Date Format)​ 68
5.4. Bespoke Date Format (Date in Spanish)​ 70

6. Worked Examples on Lists​ 72
6.1. Comparing a value against a list​ 72

7. Worked Examples on Numbers​ 75
7.1. In Words​ 75
7.2. In Words: Numbers with Commas into Words​ 76
7.3. In Words: Money​ 79
7.4. Format Number​ 84
7.5. With Precision - Including 0’s when rounding numbers​ 85
7.6. Numbers in Ordinal Form​ 87

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

7.7. Introduction to calculations in a table​ 95
7.8. Complex Calculations in a table​ 98

8. Worked Examples on Loops​ 102
8.1. Creating plural text when there is more than one looped attribute​ 102
8.2. In-line loops​ 106
8.3. Automatic list separators across loops​ 109
8.4. Extracting one of the answers from a looped question​ 112
8.5. Display multiple placeholders within a loop in an inline list​ 114
8.6. Row: extract a specific index item in an array​ 120

8.7. Worked Examples for Dictionary​ 123
8.8. Worked Examples for At​ 125
8.9. Worked Examples for Sysdate​ 127
9. Additional support​ 129
10. Archived Worked Examples​ 131

Numbers in Ordinal Form (Regex)​ 131
11. Changelog​ 143

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Avvoka Operations Guide

1.​ Background

1.1.​ Introduction

1.1.1.​ This operations guide will explain each operation and their function.

1.1.2.​ Operations reformat and repurpose information entered into the questionnaire. They

present an opportunity to stretch the content of those answers into broader

characterizations. By layering different rules for the information to flow through,

operations have the potential to create highly customised outputs.

1.1.3.​ For more help on using Operations, contact help@avvoka.com.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

1.2.​ Creating an Operation

1.2.1.​ To start off, navigate to the Operations tab in your template. Then, click the blue +

button.

1.2.2.​ A pop up menu will appear on the right. Rename your operation to your desired name

and click "Rename operation".

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

1.2.3.​ After you have done so, click the "Add" button to start creating a new operation.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

1.2.4.​ To add an operation to a document, navigate back to the "Document" tab and click on

the document body where you would like to include the operation. Select the

Automation tab in the top menu and click on Σ.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

1.2.5.​ Selecting this icon will prompt a window, enabling you to select the operation in the

drop down list. Then, select the operation you have created and click insert to add it

to the document.

1.2.6.​ The operation will appear in the document as yellow highlighted text.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

1.3.​ Operation library

1.3.1.​ Users can create and save Operations in the Operation library.

1.3.2.​ You can access the Operation library by going into the templates area, and selecting

Libraries > Operation library in the left panel. To create a new operation in the library,

click ‘add new operation’.

1.3.3.​ Press the “Add” button to start building your operation. Once you have completed

building the Operation, click “Create Custom Operation”.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

1.3.4.​ To apply the saved Operation, go into the relevant template and select the Operation

tab. Click the “import” button at the top right of the screen and tick the checkbox next

to the saved Operation you wish to import. The operation will now appear in your

Operations tab.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

1.4.​ Explanatory note

Connective Inputs

1.4.1.​ Connective inputs are the nuts and bolts of an operation. They serve as the essential

mechanisms of the rules, or logic that construct the operation. As a result, connective

inputs are present in almost every operation. Using the information entered into the

questionnaire, connective inputs steer the transformation of that information.

1.4.2.​ Generally, connective inputs dictate the rules of an operation. ‘Comparisons’, for

instance, are a clear example of how you can use connective inputs as the driving

arguments for the operation. You would use these arguments (e.g. equals, not

equals, less than etc.) to compare values against one another.

1.4.3.​ Other examples of connective inputs are “Inputs” and “Logic”. Ultimately, they all

collectively represent the method of controlling the output of an operation by bringing

the relevant information together.

Functional Inputs

1.4.4.​ Functional inputs have a more defined use. While connective inputs identify the

information or logic, functional inputs create that change.

1.4.5.​ Examples of functional inputs are localisation (long date, in words etc), text, and

maths. These transform the information into defined formats, such as a number into a

word or calculating a sum. In complex operations, it is possible to layer multiple

functional operations together. An example could be creating a mathematical

calculation and then transforming the numerical value into its word format

(localisation).

1.4.6.​ Using these two inputs in a single operation, connective inputs identify the relevant

information, and the functional inputs create the transformation (e.g. identify the date

attribute (connective) and transform it into a long date (functional)).

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

2.​ Connective Operations

2.1.​ Inputs

Text Text allows a user to enter a custom, static text which can be used within the

operation. The Text input serves different purposes in different operations. For

instance, it could be used to search for a word, replace text or adopt language using

a locale code. Therefore, it is perhaps best to understand the Text input in the context

of those operations.

Attribute Each attribute is tied to a question in the questionnaire. The title of the attribute is

visible in the questionnaire above the question text (the text highlighted in red below).

These attributes can be created through placeholders or any conditional automation

such as block conditions and inline conditions.

Selecting the Attribute button in the Operations interface will display a drop down list

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

of all the existing attributes in the document (as shown below).

Since an attribute is intrinsically linked to a question in the questionnaire, attributes

are used in operations to link the question-answer to the operation.

In the capitalise operation below, the attribute “Employee Name” is used to ensure

the first letter of each word is capitalised. If I answer “JOE BLOGGS or joe bloggs” to

the question ‘Employee Name’, the operation will take the question-answer and

modify that to be “Joe Bloggs Or Joe Bloggs”.

Pro tip: You can also create new attributes using an operation. To do this, write the

name of the attribute you would like to create in the Attribute box and press the ‘+’

button. As a result, a new question will be created in the questionnaire. This is helpful

if you would like to create a question without adding a placeholder in the document.

A key example of this would be when you want a date to appear as a long date, and

do not want the short date format to show in the document. The solution is to create

the “Date” attribute in the Long Date operation. This will create a new question in the

questionnaire without needing to place a “Date” placeholder in the document. This is

explained in more detail below.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Attribute

as Array

Specific to loops: Attribute as Array is specific to placeholders which are placed

within a loop. By default, looped attributes display stacked on top of each other. Using

Attribute as Array, we can display these attributes so they display on a single line.

This is especially useful if there are multiple outputs being returned from an

operation. Ultimately, the input enables the user to structure the data returned by the

operation. See this in action below.

Attribute as array is similar to the attribute function, in that existing attributes can be

selected, or new attributes created using this operation.

Number This allows a user to enter a custom, static number which can be used throughout an

operation. The Number functionality is especially useful whenever using

mathematical calculations.

List Avvoka’s List functionality allows users to upload lists. These are used to create a

dropdown list of answer options within the Questionnaire.

A list must be created before it is used in an operation. You can create a list by going

to the template area and selecting in the left panel Data > List.

Used in an operation, the list defines a set of values.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

When referring to a list, select the List input and the Text input, to write the name of

the list. In the example below ‘Countries’ is the name of the list (referring to the list

shown above).

In a service contract, or a due diligence report, the List input can be used to compare

an answer against values provided in a list. For example, you could have a list of high

risk services, or countries. We can ask a question, ‘what services do you provide?’,

and if the answer is included in the ‘high-risk services list’, return a value saying it is

high risk.

See our worked example here.

Datasheet Avvoka’s Datasheets functionality enables users to create a database at a profile or

organisation level. Users can define custom column names and add a new row (or

record) of data. Datasheets can then be used to create a dropdown list of answer

options within the Questionnaire. Datasheets work similarly to lists and dependent

lists.

A Datasheet must be created before it is used in an operation. You can create a

datasheet by going to the template area and selecting in the left panel Data >

Datasheets.

When referring to a Datasheet, select the Datasheet input and the Text input, to write

the name of the Datasheet. In the example below ‘Countries’ is the name of the

Datasheet (referring to the Datasheet shown above).

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

You can build dependencies out of datasheets using this operation. If you have a

datasheet with the columns ‘Name’ and ‘Age’, you can use this operation to output

the Age data without needing an associated question:

The arguments above refer to:

Text - the name of the datasheet.

Attribute - the name of the dependent attribute.

Text - the dependent column header in the datasheet

Text - the name of the column in which the desired output sits

Read more about Datasheets in our User Guide.

Dependent

List

Dependent Lists use related data to narrow down a list of options based on a

previous answer. Using a dependent list could mean that answering question A

differently would vary the list of options for question B.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

https://docs.google.com/document/u/1/d/1cxvCSlQ8n7tTCQnd-0uz1zhQ44PAg2iv/edit
mailto:info@avvoka.com
http://www.avvoka.com

For example, if you are completing the questionnaire for an employment agreement,

it would be useful to automatically populate the office address dependent on the

selected country / city. E.g. if I selected the country to be the UK, it would show the

UK office addresses.

A dependent list has two inputs, the first is the Key, (i.e. the country) and the second

input is the value (i.e. office address).

Pro tip: If there is only one value to a key, if I select ‘UK’ for Office Location, ‘London

Address’ will automatically populate the answer to Office Address. (UK (key) and

London Address (value)).

This example uses the ‘Join’ array. Join is discussed here

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Watch this video on creating a dependent list.

Iterated

attribute

Specific to loops: An iterated attribute refers to attributes contained within a loop. In

a loop, an attribute can be duplicated to create multiple values from a single question.

Each loop is referenced by an index number. For instance, if the attribute Office

Location is looped 3 times, the index will be 3. The iterated attribute functionality

enables you to extract the last looped value.

If you would like more information about loops, check out our article here or our User

Guide.

s

This function contains two arguments:

1.​ the Attribute being looped (note: it is Attribute, not Attribute as array);

2.​ the Iterator function (the index of the looped attribute).

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

https://vimeo.com/646794892
https://help.avvoka.com/en/articles/3803713-setting-up-repeats-or-loops
https://docs.google.com/document/u/1/d/1cxvCSlQ8n7tTCQnd-0uz1zhQ44PAg2iv/edit
https://docs.google.com/document/u/1/d/1cxvCSlQ8n7tTCQnd-0uz1zhQ44PAg2iv/edit
mailto:info@avvoka.com
http://www.avvoka.com

Dictionary A user is able to define concepts using the Dictionary operation. For instance, if you
have an attribute named ‘seller’ then you are going to have a text: seller has but if
the attribute is ‘sellers’ it will say: sellers have.

See our worked example here.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

2.2.​ Comparison

2.2.1.​ Comparison blocks will take two inputs, i.e. attributes or text, and evaluate if the

comparison between these inputs is true. If the inputs match, the operation will output

the value as “true”. On the other hand, If the compared outputs do not match, the

Operation will output the value as “false”.

2.2.2.​ For example, in the below example, the comparison block will be evaluating whether

the Attribute [Probation] equals the Value [Yes]. If Probation equals Yes, then the

Operation will output the value “true”. If Probation does not equal Yes, the Operation

will output the value “false”.

2.2.3.​ In an employment contract, this can be helpful as a rule triggering a condition (i.e a

block condition for a probation clause). In this example, if the user answers yes to

probation, the probation clause will drop into the contract.

Equals If the compared inputs are the same, the Operation will output the value “true” and

vice versa. For instance, as per the example below, if the Attribute and Value are the

same, this Operation will output the value “true”.

Learn how to make use of these outputted “true”/“false” values below.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

To create this operation, select the “Equals” function. Then, add an “Attribute” function

and select the relevant attribute. Following that, add a Text Input. Your screen should

then appear as below

Not

equals

If the compared inputs do not match, the Operation will output the value “true” and

vice versa. For instance, as per the example below, if the Attribute and Value do not

match, this Operation will output the value “true”.

Learn how to make use of these outputted “true”/“false” values below.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

To create this operation, select the “Not Equals” function. Then, add an “Attribute”

function and select the relevant Attribute. Following that, add a Text Input. Your screen

should then appear as below.

Greater

than or

equals

If the value of the first input is greater than or equal to the value of the second input,

the operation will output the value “true” and vice versa. For instance, as per the

example below, if the employee is given 20 or more days of holiday, this operation will

output the value “true”.

Learn how to make use of these outputted “true”/“false” values below.

Greater

than

If the value of the first input (e.g an attribute, such as [Holiday Entitlement]) is greater

than the value of the second input (e.g a number input [21]), the operation will output

the value “true”, and vice versa. Using the example below, this would mean that if the

employee is given 21 or more days of holiday, this operation will output the value

“true”.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Learn how to make use of these outputted “true”/“false” values below.

Less If the value of the first input is less than the value of the second input, the operation

will output the value “true” and vice versa. For instance, as per the example below, if

the employee is given 19 days or less of holiday, this operation will output the value

“true”.

Learn how to make use of these outputted “true”/“false” values below.

Less than

or equal

If the value of the first input is less than or equal to the value of the second input, the

operation will output the value “true” and vice versa. For instance, as per the example

below, if the employee is given 20 days or less of holiday, this operation will output the

value “true”.

Learn how to make use of these outputted “true”/“false” values below.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

2.3.​ Logic

Not The operation will output the value “true” if the value does not satisfy the logic, and

vice versa. In the example below, the logic is asking whether the salary amount is

equal to or above £30,000. Therefore, if the salary is £25,000, the operation would

return a value of true.

If The if function takes three arguments:

1.​ a logical test (the block in red);

2.​ the value to be outputted if that test is true (the block in orange);

3.​ the value to be outputted if the test is false (the block in green).

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

For example, the following operation will output “High Paid” if the salary amount is

greater than or equal to £80,000 – otherwise it will output “Low Paid”.

Multiple ‘if blocks’ can be nested by adding a new ‘if’ block as the third input, ie. the

value to be outputted if the first ‘if block’ is false. Avvoka will then evaluate the second

‘if block’ and work through nested ifs until there are no more, or one is true.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

As you can see in the example above, another “if block” has been added to the third

input. The following operation will output Trainee if the salary is equal to or less than

£45,000, and Low Paid if the salary is between £45,000 - £80,000.

And You will be able to add multiple comparisons into this block. This block will output the

value “true” if all of the comparisons are true. If all the comparisons are false, the block

will output the value “false”.

In the above example, if the job title is Associate, and the employee will have access to

a company car, this block will output the value “true”. But, if the job title is Partner, and

the employee will have access to a company car, this block will output the value “false”.

Learn how to make use of these outputted “true”/“false” values below.

Or You will be able to add multiple comparisons into this block. This block will output the

value “true” if at least one of the comparisons is true.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

In the above example, if the job title is Partner, and the employee will have access to a

company car, the block will output the value “true”. However, if the job title is Partner,

and the employee will not have access to a company car, this block will output the

value “false”.

Learn how to make use of these outputted “true”/“false” values below.

Present This operation checks whether the argument inserted contains any string of text. If

there is any string of text present, this operation will output the value “true”. If no text is

present, this operation will output the value “false”.

In the above example, if any string of text is given describing the employee’s duties in

the questionnaire, then the operation will output the value “true”. If there is no text

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

present at all, the operation will output the value “false”.

Learn how to make use of these outputted “true”/“false” values below.

Not

Present

This operation checks whether the argument inserted contains any string of text. If the

argument does not contain any string of text, this operation will output the value “true”.

If text is present, this operation will output the value “false”.

In the above example, if there is nothing present for the attribute “Example 1” in the

questionnaire, then the operation will output the value “true”. However, if there is any

text present, the operation will output the value “false”.

Learn how to make use of these outputted “true”/“false” values below.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Includes

Includes looks for the presence of text within an answer, or list. It is useful in

conjunction with the If operation, whereby two values can be extracted on the basis of

that text, or phrase, being present.

Below is an example of how this operation could be used to compare a value against a

list.

This function takes three arguments:

1.​ a logical test checking if a string exists in an array drawn from a dependent list

(the red block);

2.​ the value to be outputted if that test is true (the orange block);

3.​ the value to be outputted if the test is false (the green block).

For example, if a global company provides the opportunity for employees to work

abroad or within its regional offices, we could use the ‘Includes’ operation to compare a

a number of lists:

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

A

B

A)​ A list of select countries the company has an office in

B)​ A dependent list of all the office locations. This is dependent because it can

automatically populate, or refine, the cities those offices are located dependent

on the country provided.

C)​ A dependent list of the company’s local offices.

Below are screenshots of these lists:

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

C

The list of countries and the dependent list of the company’s office locations are ‘full’

lists - these display every office location for that company. The final dependent list,

local offices, is used for the purposes of identifying the local offices.

First, the dependent list will produce an array of cities (the office locations) according to

each country selected.

In the questionnaire, the user will first select a country and this answer will refine the

list of options for the next question, asking for the city. The operation will look at the

answers provided and compare them with the dependent list of local offices, seeing if

the answer matches. If the logic is true (there is a match) the operation will return a

value ‘Local’. On the other hand, if there is not a match, the operation will return the

value ‘international’.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

3.​ Functional Operations

3.1.​ Math

3.1.1.​ This operation will allow you to perform calculations on your template.

3.1.2.​ All inputs in this section must be numbers (either numbers in the calculation or

attributes which have numbers entered into them).

3.1.3.​ To get started on your calculation operation, select one of the options under “Math”.

In this case we will select “Add”. You should now see this below.

3.1.4.​ Click the ‘Add’ button and choose the numbers or attributes that you wish to use.

3.1.5.​ The two numbers within this container will be added together in your desired

Operation.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

3.1.6.​ Please see below for a summary of the Math functions.

Add This will add both values in the container - This only works for TWO values.

To add more than two values together use “Sum”.

Subtract This will subtract the second value in the container from the first, and output the result.

For example, the cost of an employee’s uniform might be deducted from their signing

bonus. The operation will return the aggregate amount the employee would receive.

Multiply This will multiply the two values in the container and output the result.

Divide This will divide the first value by the second value and output the result. For example,

the bonus might be a tenth of the employee’s salary. In the example below the salary

is £30,000, so the bonus will be £3000.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Sum Sum allows you to add up multiple inputs (unlike Add which will only allow you to add

two values together). This operation will output the result of the equation, however you

can have any number of arguments to sum together.

View this example below on how to manage the “sum” function in a table.

Round This will round off the first value to the number of decimal places as expressed in the

second argument and output the result. In the example below, if the annual pay is

£25,000, the employee will be paid £2083.33 a month.

Without Round

With Round

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

In this example, the operation will output 2083.3, rounding the number to one decimal

place. If 2 is used in the second argument, the operation will output 2083.33. If 0 is

used, the operation will output a whole number of 2083.

If you wish to round a number off to their hundredths/thousandths place instead,

simply use negative numbers.

In the above example, if the employee's monthly salary was £2083.33, this will output

the number 2080.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

3.2.​ Text

Concatenate This will output a string made up of multiple inputs joined together (e.g combining

the values of two attributes in a single line).

This is helpful if you want to join the answers of two questions. A basic example

might be where there are placeholders for first name and last name, and you want

to join them together to make a full name.

To create a separator between the words, such as a space, use ‘text’ and insert the

separator - as shown below.

Alternatively, we might use this operation to change the date format to meet local

styles, e.g. American format (month/day/year). See the worked examples section

for an example of this.

Upper This will output the inputted string in all upper-case. For example, we have created

a question to provide the ‘Employee Name’ using the attribute input. The Upper

Operation transforms the text into UPPER TEXT.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Lower This will output the inputted string in all lower-case. For example “EMPLOYEE

NAME” will become “employee name”.

Capitalise This will output the inputted string with the first letter of each word in uppercase

type. For example “joe bloggs'' will become “Joe Bloggs”.

Sentence

case

This will output the inputted string with the first letter of each sentence in uppercase

type. For example “the quick brown fox jumps over the lazy dog” will become “The

quick brown fox jumps over the lazy dog”.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Regex

Replace

This allows for phrases (including numbers) to be modified through regex replace.

●​ Attribute: The first input is the string to be modified.

●​ Text: The second input is the regular expression that will be matched and

replaced by the third input.

●​ Text: The third input is what should replace each of the matches listed in the

second input.

In the above example, whenever “Director” is typed in the document questionnaire

for the question on who the individual should report to, it will be replaced with

“Partner”. This could be helpful when consolidating precedent banks, so they

update according to the answers provided.

For more complex regex replace operations, it is possible to insert Regular

Expressions into the second or third inputs. To see this in action, view the Numbers

in Ordinal Form (Regex) example below.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

https://regex101.com/
https://regex101.com/
mailto:info@avvoka.com
http://www.avvoka.com

Regular expressions should be considered advanced functionality and require a

knowledge of regular expressions, training on which cannot be provided by Avvoka.

Contains This operation checks whether the second string is contained within the first string,

such that the following operation would output the value “true”.

In this example below:

●​ If the user answered “Hoxton Street, London” to the question “Provide the

full office address” in the questionnaire, the operation would output the

value “true”.

●​ If the user answered with “Hammersmith, London”, the operation would also

output the value “true”.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

●​ However, if the user gave an answer that did not include London at all, for

example “The Champs-Élysées, Paris” the operation would output a result

of “false”.

Learn how to make use of these outputted “true”/“false” values below.

Contains can also be used to compare a value against a list. View this worked

example for more information.

Not contains This operation checks whether the second string is contained within the first string.

If the second string is not found within the first then the operation will output the

value “true”.

In this example below:

1.​ If the user answers “London” to the question “Provide the full office address”

in the questionnaire, the operation would output the value “false”.

2.​ If the user answered “The Champs-Élysées, Paris” (or any other answer

that does not contain the text London), the operation would output the value

“true”.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Learn how to make use of these outputted “true”/“false” values below.

Starts with This operation checks whether the first string starts with the text contained within

the second string. If the first string starts with the text contained within the second

string then the operation will output the value “true”.

In this example below:

1.​ If the user starts their answer with “USA” to the question “Provide the full

office address” in the questionnaire, the operation would output the value

“true”.

2.​ If the user answered “France” (or any other answer that does not start with

the text USA), the operation would output the value “false”.

Learn how to make use of these outputted “true”/“false” values below.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Ends with This operation checks whether the first string ends with the text contained within the

second string. If the first string ends with the text contained within the second string

then the operation will output the value “true”.

In this example below:

1.​ If the user ends their answer with “USA” to the question “Provide the full

office address” in the questionnaire, the operation would output the value

“true”.

3.​ If the user answered “USA - Florida” (or any other answer that does not end

with the text USA), the operation would output the value “false”.

Learn how to make use of these outputted “true”/“false” values below.

Length This operation outputs the number of characters contained within the string.

In this example below, the operation will output the number of characters in the

answer to the Company Number question.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

First n

characters

This operation outputs the first n characters contained in the first string. The “n”

number is determined by the number inserted into the second string.

For example, in the example below, the operation will return the first 3 characters

contained in the first string.

Last n This operation outputs the last n characters contained in the first string. The “n”

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

characters number is determined by the number inserted into the second string.For example,

in the example below, the operation will return the last 3 characters contained in the

first string.

Split The Split operation takes a string as its input and generates an array based on a

specified separator. It requires two parameters to function properly. The first

parameter is a string of text that you want to split, while the second parameter is a

separator text which you want to use as a separator to split the given strings in the

first parameter.

For instance, if you have a string [ABCD] that you want to split using the separator

",". You can do so by selecting the ‘Split’ operation (found under the Text column),

and then add an attribute which will be the first parameter as the input text that you

want to split, and the second parameter as the separator text ("," in this case).

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

3.3.​ Localisation

3.3.1.​ This section will explain the functions of the localisation blocks. The setup of these

operations will be explained in more detail in our “Frequently Used Operations”

section.

Long Date This operation takes an inputted short date format and outputs the date in a longer format,

such as in the screenshot below. The date can be localised with locale codes.

This operation is explained in more depth below.

Date

Format

This operation takes an inputted short date format and outputs a specific formatted

element of the date, such as day, month or year. The date can be localised with locale

codes. (see the codes here)

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

This operation is explained in more depth below.

Date

Offset

The Date Offset operation allows you to add or subtract a certain number of

days/weeks/months/years to/from an existing Date in the template.

How to set up a Date Offset operation:

●​ Select the date you want to subtract from or add to (this will usually be an attribute

set to a Date type in the questionnaire) (in red)

●​ Select whether you want to subtract from (-) or add to (+) this date. Then choose

the number of days/weeks/months/years you want to add or subtract. Enter ‘d’ to

signify days, ‘w’ for weeks, ‘m’ for months, and ‘y’ for years. (in orange)

●​ The output of this operation will come in the format YYYY-MM-DD, so if you would

prefer a different format, make sure to wrap the Date Offset operation in a Date

Format operation (in green)

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Date

Difference

This operation allows you to find the number of days/weeks/months/years between two

dates.

How to set up this operation:

●​ Enter the first date (in red)

●​ Enter the second date (in orange)

●​ Provide whether you want the result to be given in days (d), weeks (w), months

(m) or years (y) (in green)

The output will be given as a number. Please note that the output will be negative if the

second date is an earlier date than the first date.

Compare

Dates

This operation allows you to evaluate the relationship between two dates (e.g. find out if

Date 1 comes after Date 2).

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

To set up this operation:

●​ Select the first date (in red)

●​ Enter (in orange);

= Equal to

!= Not equal to

> Greater than (comes after)

>= Greater than or equal to

< Less than

<= Less than or equal to (comes before)

●​ Enter the second date (in green)

●​ The output of this operation will be either true or false

In Words This operation will take an inputted number and output the number in words, such as in

the screenshot below. The output can be localised with locale codes.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Users may also wish to wrap this operation with ‘Capitalise’ in the first string, to turn the

first letters of the words into capital letters; ‘Five Thousand’.

This operation is explained in more depth below.

Format

Number

This operation will take an inputted number and output the number with the appropriate

punctuation, such as in the screenshot below. The output can be localised with locale

codes.

This operation is explained in more depth below.

Format

Number

With

Precision

This operation works in conjunction with the “round operation” to ensure that integers

when rounded off, do so with a .00 as in the example below. The output can be localised

with locale codes.

This operation is explained in more depth below.

Sysdate The Sysdate operation enables users to retrieve the creation date of a document for

display or use in other operations (i.e: "Date Offset" "Date Difference" or "Compare

Dates"). It is important to specify a Date Format to ensure that the retrieved date is

formatted according to specific and desired requirements.

Example: By using the Sysdate operation with the appropriate Date Format, a user can

extract the creation date of a document and display it in a desired format, such as

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

https://docs.google.com/document/d/1eIwSWRa2Dc-IcJY--x8v_T_yaa9h7trxc6vA0OgZKc0/edit#heading=h.d5g4zvexkx0r
https://docs.google.com/document/d/1eIwSWRa2Dc-IcJY--x8v_T_yaa9h7trxc6vA0OgZKc0/edit#heading=h.6yonc16cfvn
mailto:info@avvoka.com
http://www.avvoka.com

"MM/DD/YYYY" or "YYYY-MM-DD". This ensures consistency and meets the specific

formatting needs of the user or application.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Commonly-used locales
A full list of locale codes can be found here.

British English en_GB

American English en_US

Spanish es

French fr

German de

European Portuguese pt

Brazilian Portuguese pt_BR

Chinese (Traditional) zh_TW

Chinese (Simplified) zh_CN

Japanese ja

Korean ko

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

https://saimana.com/list-of-country-locale-code/
mailto:info@avvoka.com
http://www.avvoka.com

Date format codes

Year

Full year %Y 2000, 2001, 2019

Short year with zero padding %y 01, 02, 19

Short year without zero padding %-y 1, 2, 19

Month

Full month name %B January, February, March

Abbreviated month name %b Jan, Feb, Mar

Month number with zero padding %m 01, 02, 03

Month number without zero
padding %-m 1, 2, 3

Week

Week of the year (Monday as start
of the week) %W 00, 01, 02, …, 99

Week of the year (Sunday as start
of the week) %U 00, 01, 02, …, 99

Day

Day of the year with zero padding %j 000, 001, 002, ..., 366

Day of the year without zero
padding %-j 0, 1, 2, …, 366

Day of the month with zero
padding %d 01, 02, …, 31

Day of the month without zero
padding %-d 1, 2, …, 31

Full weekday name %A Monday, Tuesday, Wednesday

Abbreviated weekday name %a Mon, Tue, Wed

Weekday as number %w 1, 2, 3

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

3.4.​ Array

Join
This strings multiple outputs together. It is composed of four parts (two mandatory):

1.​ The first argument which produces the outputs to be joined (in red).

2.​ The second argument that contains the default text separator for each output

(in orange).

3.​ The third argument contains the penultimate text separator for two or more

iterations (in purple).

4.​ The fourth argument contains a text separator when there are two iterations

(in pink).

N.B. The last two arguments are optional.

This will serve to join the outputs into a single string and include the separator

between each output. The outputs are an array (typically those returned by a

Dependent List block or a looped attribute).

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

The arguments for the operation above are as such:

●​ Dependent list

○​ Text: Title of the Dependent List (Cities)

○​ Text: List key (UK)

●​ Separator Text: Delimiter (,) (with a space after)

●​ Penultimate Separator Text for more than 2 iterations: and (with a space

after)

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

●​ Separator Text for two iterations: and (with a space after)

In this example, the title of the Dependent List is “Cities”. We might use this operation

within an existing operation to extract all the values attached to a key in an array, e.g

using ‘contains’. Or alternatively, display all those values in an array in the document

itself. This example will result in the below;

As previously noted, the 'Join' function is compatible with any array. Therefore, if

desired, a looped attribute can substitute for a Dependent list argument.

Count This functions to count the number of times an attribute in a loop has been looped. To

see this in action, we will first have to create a looped placeholder in the template (text

highlighted in a light shade of blue)

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Then, navigate to the operations menu. Since the placeholder is looped, we will have

to use the function “Attribute as array”.

Once you have created the operation, insert it into the template.

Once you have answered the relevant questions, the Operation should output the

number of times the placeholder has been looped.

In this example, the employer may define other office locations the employee will be

expected to work at. If the employee lists a number of additional offices, we can use

the count operation in an inline condition with an ‘s’ to make office[s], if satellite office

>= 2.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

At This function allows you to extract a specific index item in an array similar to rows,

except it is specific to non-looped arrays. For instance, the array could be ["A", "B",

"C", "D]. Now you want to pull value 2 from the array you need to subtract 1 from this

number as it takes the index of the array to start from 0 rather than 1.​

There would be two parameters for this:​

1.) The array parameter that you want to pull the value from.

2.) The number parameter for the index of the array that you want to pull values

from. You need to subtract 1 from this number as it takes the index of the array to start

from 0 rather than 1.

This is used in the following worked example.

Iterator Specific to loops: This functions as a label for the attributes being looped and can be

named however you want it. It is used with the Iterated attribute function.

You can either choose to input a value into the Iterator section or leave it blank. If left

blank, the attributes will be labelled according to their index. This index is highlighted

in red and orange below.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Map Specific to loops: This is the input which ties together all the needed components

and outputs an array (the output).

This is used in the following worked example.

Row Row helps to extract a specific index item in an array. For instance, a looped attribute
could be ["1", "2", "3", "4"]. So, the row operation in this case would then have 2
parameters:

1.​ A Text parameter for the index that you want to extract (e.g. "2"); &
2.​ An Attribute parameter that points to the looped attribute that you're extracting

from. This is used in the following worked example.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Reference Reference is always used when the Dictionary operation is used. A user is able to

define concepts using these operations.

Worked Examples
4.​ Making use of “true”/”false” values

4.1.1.​ Throughout this guide, you may have seen multiple references to Operations

outputting the value “true”/”false”.

4.1.2.​ We can make use of these values “true” and “false” values outputted by the

Operation to build conditions. For example, if the value outputted by the Operation is

“true”, a clause or sentence could be dropped into the document.

4.1.3.​ To do this, when building a “block condition” or “in-line” condition, select the

Operation from the attributes list (it will have an E next to it). Then, set the final value

to “true” or “false” as so desired.

4.1.4.​ To illustrate this, we will use the below “Contains” block as an example.

4.1.5.​ With reference to how a Contains block operates:

●​ If the user’s answer contained “London” to the question “Provide the office address”

in the questionnaire, the operation would output the value “true”.

●​ However, if the user gave an answer that did not include London at all, the operation

would output the value “false”.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

4.1.6.​ If the office is in London, the employee may not need to travel at all. As such, the

clause on travel in the employment contract will not be necessary. Therefore, the

clause should drop in only if the operation returns a value of false.

4.1.7.​ Highlight the whole clause on travel and create an in-line/block condition over it. Set

the in-line/block condition up so that the first input is the “Contains London” operation

and the final input is “false” as shown below.

4.1.8.​ The operation should now work as intended!

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

5.​ Worked Examples on Dates

5.1.​ Long Date

5.1.1.​ The Date format in the questionnaire is set by default to be short form (e.g.

01/10/2021). The long date operation takes this inputted information and transforms it

into its long form (1st October 2021).

5.1.2.​ To create the operation, select Localisation under Long Date, so that long date is in

the top band. Then choose the attribute that the operation will pull the information

from (e.g. Date).

5.1.3.​ In the drop down list for the attribute, you can either select an existing Date attribute

that you wish to convert to a long date. Or, you can create a wholly new attribute that

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

you wish to convert to a long date. For example, you may wish to create a new

attribute for ‘Date of Execution’, as opposed to ‘Date’.

5.1.4.​ To create a new attribute, type in the desired name ‘Date of Execution’ and click +.

This will create a new attribute, forming a new question in the questionnaire.

5.1.5.​ Then, go back into the questionnaire and navigate to the relevant attribute. Click the

drop down list to the right of the attribute and change the question type to a Date

question.

5.1.6.​ Finally, the date can be localised using locale codes, e.g. US all the way to Chinese.

This is inputted using the Text input at the bottom of the operation.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

5.1.7.​ Feel free to watch this video on how to create the Long Date operation.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

https://vimeo.com/646063551
mailto:info@avvoka.com
http://www.avvoka.com

5.2.​ Date Format

5.2.1.​ The Date format in the questionnaire is set by default to be short form (e.g.

01/10/2021). However on some occasions, you might want to extract a specific

element of the date. For example, the day, month or year.

5.2.2.​ In the example below, the specific month of February has been extracted from the

answered date.

5.2.3.​ To create the operation, select Date Format under Localisation, so that Date Format

is in the top band. Then choose the attribute that the operation will pull the

information from (e.g. Date).

5.2.4.​ In the drop down list for the attribute, you can either select an existing Date attribute.

Or, you can create a wholly new attribute.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

5.2.5.​ Then, go back into the questionnaire and navigate to the relevant attribute. Click the

drop down list to the right of the attribute and change the question type to Date.

5.2.6.​ Then, choose the element of the date that you wish to extract. This is inputted by

selecting the text input and typing in the relevant date format code.

5.2.7.​ Feel free to watch this video on how to create the Date Format operation.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

https://vimeo.com/646077337
mailto:info@avvoka.com
http://www.avvoka.com

5.3.​ Bespoke Date Format (eg. US Date Format)

5.3.1.​ The date, even in its short form, can vary across different countries. For example in

the US, the short date format is (MM/DD/YYYY), as opposed to the English format of

(DD/MM/YYYY), which is the default in Avvoka.

5.3.2.​ Users can use date format codes to customise their date formats. However, users

can also create more bespoke date formats using the following operation if they so

choose.

5.3.3.​ To create the operation, select ‘Date Format’, under localisation, and add an attribute,

e.g. Date.

5.3.4.​ Add a second argument using Text:

●​ The code for month number is %m, the code for day number is %d and the code for

the year number is %Y.

●​ Arrange these codes in your preferred order. Ensure that there is a “/” between each

code.

5.3.5.​ The operation should look similar to the image below. The example below shows an

operation for the US Date format (MM/DD/YYYY).

5.3.6.​ Then go into the questionnaire and change the format of the question under the

attribute Date to the Date question type.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

5.3.7.​ Finally, add the operation into the document using the ‘insert quick operation’ button.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

5.4.​ Bespoke Date Format (Date in Spanish)

5.4.1.​ Format your date in Spanish through the Long Date and Date Format operation.

5.4.2.​ For Long Date, carry out the same steps as seen here. Then apply the spanish locale

code ‘es’ in the text box, as shown by the image below:

5.4.3.​ For Date Format, start the first string with the Date Format operation:

●​ For the first argument choose Attribute, and select (or create), the attribute you would

like to use for this operation.

●​ For the second argument, you should use Text. Use the date format codes,

separated with a space and ‘de’ between each code. You can view a preview of what

the operation might look like, when the codes are replaced with words, by looking at

the ‘plain english expression’ under operation details to the right.

●​ For the third argument, you should use Text. Apply the Spanish locale code ‘es’.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

6.​ Worked Examples on Lists

6.1.​ Comparing a value against a list

6.1.1.​ Watch this video to see how this operation is created, or read the instructions below.

6.1.2.​ This operation takes a value and compares it against a list. A basic example might be

that a counterparty is asked what services they are providing. The given value can

then be compared against a list of high-risk services, and if any of the services on the

high-risk list are present, a ‘high-risk’ warning to the legal team will be triggered.

6.1.3.​ To create the operation, you firstly need to create a list. Lists are created by going

into the template area, and selecting Data in the panel on the left.

6.1.4.​ Lists are stored on a template level meaning they can be updated, or added to over

time.

6.1.5.​ For this example, we are using a list of High-Risk Services. We want it so that if the

value matches any in the above list, our operation will output the value “High Risk”.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

https://vimeo.com/647379434
mailto:info@avvoka.com
http://www.avvoka.com

6.1.6.​ Go back into the template where you can either create a new placeholder, or

condition, which will create the question. In this example, we will create a new

placeholder called ‘Services’. Feel free to customise the question.

6.1.7.​ For the operation, we begin with ‘If’. “If” provides the means to control the output of

the operation. To break it down, with reference to how an “if” block works:

●​ Red block: a logical test. The test here is essentially “Does the answer to the

attribute ‘services’ contain a high-risk service from the high-risk list?”

●​ Orange block: the value to be outputted if that test is true - High Risk

●​ Green block: the value to be outputted if the test is false - Low Risk

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

6.1.8.​ Within the red block, we have an argument beginning with ‘contains’. This block is

essentially checking to see if “Services” contains any of the services from the

“High-Risk Services” list.

6.1.9.​ As such, the first list block is used to identify which list we want to use. Make sure

you provide the exact name of the list as it appears in the “Lists” menu - The input is

case sensitive.

6.1.10.​ The second block is ‘Attribute’, which links the operation to the answer provided to

this question. It signifies which value we want to compare the first “List” block to.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

7.​ Worked Examples on Numbers

7.1.​ In Words

7.1.1.​ This operation will take an inputted number and output the number in words, such as

in the screenshot below. For example, 30 will be outputted as ‘thirty’ as in the

example below.

7.1.2.​ To create the operation, select In Words under Localisation, so that In Words is in the

top band. Then choose the attribute where the operation will pull the information from

(e.g. Holiday Entitlement). In the drop down list for the attribute, you can either select

an existing attribute or you can create a wholly new attribute.

7.1.3.​ Finally, the number can be localised for different countries, e.g. from the US all the

way to China. This is inputted by selecting the text input and typing in the relevant

locale code.

7.1.4.​ Feel free to watch this video on how to create the In Words operation.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

https://vimeo.com/646428414
mailto:info@avvoka.com
http://www.avvoka.com

7.2.​ In Words: Numbers with Commas into Words

7.2.1.​ When utilising the simplified “In Words” function, numbers with commas may not be

output in a desired manner. For example, an input of “2,000” will appear as an output

of “two” rather than “two thousand”.

7.2.2.​ To solve this problem, we can use the operation below. To break it down, with

reference to how an “if” block works:

●​ Red block: a logical test. The test here is essentially “Does the answer to the

attribute ‘number’ contain a comma?”

●​ Orange block: the value to be outputted if that test is true

●​ Green block: the value to be outputted if the test is false

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Orange block: the value to be outputted if the answer to the attribute ‘number’

contains a comma

7.2.3.​ To break it down, with reference to how a “regex replace” block works:

●​ Attribute: The string to be modified.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

●​ Text: The expression that will be replaced by the Text block below it. In this case, the

expression in the first Text box is “,”.

●​ Text: This is what should replace each of the matches listed in the above Text box. In

this case, this text box is blank.

7.2.4.​ This regex replace block essentially replaces any “,” in a number with a blank,

effectively removing the “,” from any number.

7.2.5.​ For example, “2,000” will be outputted as the value “2000”.

7.2.6.​ This will allow the “In Words” function to read the number in its pure numeric form, so

that it can accurately convert it to “two thousand”.

Green block: the value to be outputted if the answer to the attribute ‘number’ does

not contain a comma

7.2.7.​ If the attribute “number” does not contain a comma, it will simply be outputted as it

was. For example, “2000” will be outputted as the value “2000”. This is because no

change is needed since the number already doesn’t have a comma in it. The “In

Words” function will be able to read the number just fine.

7.2.8.​ Watch the video here on how to create this operation

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

https://vimeo.com/646918209
mailto:info@avvoka.com
http://www.avvoka.com

7.3.​ In Words: Money

7.3.1.​ This operation will take an inputted amount of money and output this amount of

money in words, such as in the screenshot below. For example, “113.45” will be

outputted as “one hundred thirteen dollars and forty-five cents” as in the example

below.

7.3.2.​ Note: there is a currency format in the questionnaire, however, this only alters the

currency symbols rather than transforming that number into its worded form (£113.45

or 113.45 AUD). This operation can look at the numbers on each side of the [.] and

transform them into their worded format.

7.3.3.​ To create this function, we will require 3 different operations.

The general logic of the operation set

7.3.4.​ We will be splitting the inputted number into two sections, the numbers before the

decimal place, “.” and the numbers after the decimal place, “.”

7.3.5.​ We will then convert these numbers into words and join them with the words “dollars

and” and “cents” in the appropriate order so that they appear as they do above.

Setting up the number attribute

7.3.6.​ First, we will have to set up an attribute that will allow us to input a number. In this

case, a placeholder titled “money” has been created.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

First operation: Isolating the numbers before the decimal place

7.3.7.​ This first operation removes all digits from a number except for those before the

decimal place. For example, “9876.54321” will be outputted as “9876”.

7.3.8.​ Above is the first operation. In this example, the operation has been given the name

“regex before”. With reference to how a “Regex Replace” block works:

●​ Attribute: The string that will be modified. In this case, the attribute “money” has

been inserted.

●​ Text: The expression that will be replaced by the Text block below it. In this case, the

expression in the first Text box is “/[.].*$/”. This is a regular expression which selects

every digit after the decimal place, including the decimal place.

●​ Text: This is what should replace each of the matches listed in the above Text box. In

this case, this text box is blank.

[Tip: This example is looking for the numbers on each side of the [.]. Altering the symbol

within the squared brackets to a [-] means you can also separate a sequence if it was

divided by a [-]. E.g a client matter number (1234567-0004321)].

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

https://regex101.com/
mailto:info@avvoka.com
http://www.avvoka.com

7.3.9.​ The operation replaces every single digit after the decimal place (including the

decimal place) with a blank. In the number “9876.54321”, the selection “.54321” will

be replaced with a blank, leaving the number “9876”.

7.3.10.​ As such, this operation titled “regex before” will only output the digits before a

decimal place.

Second operation : Isolating the numbers after the decimal place

7.3.11.​ This second operation removes all digits from a number except for those after the

decimal place. For example, “9876.54321” will be outputted as “54321”.

Above is the second operation. In this example, the operation has been given the name

“regex after”. With reference to how a “Regex Replace” block works:

●​ Attribute: The string that will be modified. In this case, the attribute “money” has

been inserted.

●​ Text: The expression that will be replaced by the Text block below it. In this case, the

expression in the first Text box is “/^[^.]*./”. This is a regular expression which selects

every digit before the decimal place, including the decimal place.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

https://regex101.com/
mailto:info@avvoka.com
http://www.avvoka.com

●​ Text: This is what should replace each of the matches listed in the above Text box. In

this case, this text box is blank.

7.3.12.​ This operation is replacing every single digit before the decimal place (including the

decimal place) with a blank. In the number “9876.54321”, the selection “9876.” will be

replaced with a blank, leaving the number “54321”.

7.3.13.​ As such, this operation titled “regex after” will only output the digits after a decimal

place.

Third operation : Joining the outputs together

7.3.14.​ Now we will proceed to use “concatenate” to join the

various strings of text together

●​ In Words: This argument will return the output of the

“regex before” operation in words. Essentially, the

numbers before the decimal place will be output as words.

●​ Text: This is the text that will follow the outputted numbers

above. In this case, we have typed “ dollars and ”. Ensure

that the spaces are present in the inputted text so that

they appear in the final output.

●​ In Words: This argument will return the output of the

“regex after” operation in words. Essentially, the numbers

after the decimal place will be output as words.

●​ Text: This is the text that will follow the outputted numbers

above. In this case, we have typed “ cents.”. Ensure that

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

the spaces are present in the inputted text so that they appear in the final output.

7.3.15.​ In this example, this operation has been given the name “concatenate”

7.3.16.​ If you would like to change the language in which the number is outputted, simply

add a “Text” input into the “In Words” block after “Attribute”. Then, type in your

desired locale code. Also feel free to change the Text in between the “In Words”

blocks to suit your desired language.

Final steps

7.3.17.​ Now that we have our 4 operations, we will return to the “document area”. Insert the

operation titled “concatenate” into the document. The operation will now work as

intended!

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

7.4.​ Format Number

7.4.1.​ This operation will take an inputted number and output the number with the

appropriate punctuation, such as in the screenshot below. The output can be

localised with locale codes. For example, 80000 will be outputted as 80,000 as in the

example below.

7.4.2.​ To create the operation, select Format Number under Localisation, so that Format

Number is in the top band. Then choose the attribute where the operation will pull the

information from (e.g. Annual Salary). In the drop down list for the attribute, you can

either select an existing attribute or you can create a wholly new attribute.

7.4.3.​ Finally, the number can be localised for different countries, e.g. from the US all the

way to China. This is inputted by selecting the text input and typing in the relevant

locale code.

7.4.4.​ Feel free to watch this video on how to create the Format Number operation.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

https://vimeo.com/649448040
mailto:info@avvoka.com
http://www.avvoka.com

7.5.​ With Precision - Including 0’s when rounding numbers

7.5.1.​ This operation works in conjunction with the “round operation” to ensure that integers

when rounded off, do so with a .00 as in the example below.

7.5.2.​ Please note that using the round operation on its own will not include any trailing 0’s

when the number is rounded. For example, without the “With Precision” wrapper, the

number 4.10 will appear as 4.1.

7.5.3.​ Now we will show you how to create this operation.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

7.5.4.​ An example of this operation can be seen above. The arguments for this operation

are:

7.5.5.​ Round:

●​ Attribute: The attribute that will contain the number you’d like to be rounded

●​ Number: The number of decimal places you’d like the number to be rounded to.

For example, if you insert the number 2 here, an input of 4.235 will be rounded to

4.24

7.5.6.​ Text: This is the locale code, which can be used to customise the rounded number.

You can either enter a locale code or leave the text box blank.

7.5.7.​ Text: The number of decimal places you’d like the result of the round operation to be

outputted with. For example, if you insert the number 3 here, an input of 4 will be

outputted as 4.000.

7.5.8.​ Text: You can either leave this argument blank or enter ‘keep_zeros’. If you enter

keep_zeros, whole numbers such as 4 will be formatted to display as 4.00. If you

leave it blank, whole numbers will display as 4. However, numbers such as 4.60 will

display as 4.6.

7.5.9.​ You can then use this operation directly in the template itself.

7.5.10.​ Watch this video on creating the operation.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

https://vimeo.com/650381857
mailto:info@avvoka.com
http://www.avvoka.com

7.6.​ Numbers in Ordinal Form

7.6.1.​ Below is a short list of Cardinal Numbers vs Ordinal Numbers.

Cardinal Numbers Ordinal Numbers

1 1st

2 2nd

3 3rd

4 4th

5 5th

7.6.2.​ If you would prefer to just create the operation, simply copy the two operations below.

However, if you would like to understand how the operation works, do read on.

The general logic of the operation set

7.6.3.​ The operation set that we are creating will ensure that all numbers inputted will be

outputted as Ordinal Numbers. This would be simple if all the numbers ended in a

“th”. However, as can be seen above, “1st”, “2nd” and “3rd” do not end with a “th”.

7.6.4.​ A solution to this would be to set up an argument that detects when the number “1”,

“2” or “3” appears at the end of a string of numbers. Once those numbers are

detected, the appropriate ordinals will appear at the end of the string. (Operation 1)

7.6.5.​ However, a problem arises when we realise that “11”, “12” and “13” also end with “1”,

“2” and “3”. But, their appropriate ordinals are “th”. If we were to only have the above

argument, they would appear as “11st”, “12nd” and “13rd”.

7.6.6.​ To solve this problem, we will have to add another argument that detects when the

numbers “11”, “12” or “13” appear at the end of a string of numbers. Once those

numbers are detected, the appropriate ordinal “th” will appear at the end of the string.

(Operation 2).

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Setting up the number attribute

7.6.7.​ First, we will have to set up an attribute that will allow us to input a number. In this

case, a placeholder titled “NUMBER” has been created.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Operation 1

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

7.6.8.​ This first operation will be titled “st,nd,rd,th”. This operation “st,nd,rd,th” will detect the

last digit of NUMBER and will output the appropriate ordinal.

7.6.9.​ Casting our mind back to how “if statements” work, the if function takes three

arguments:

1.​ The block in red: a logical test. In this case, the test is “Is the last digit of NUMBER

the number 1?”

2.​ The block in orange: the value to be returned if that test is true. In this case, if the

last digit of NUMBER is the number 1, the test will be true and the value “st” will be

returned.

3.​ The block in green: the value to be returned if the test is false. In this case, if the

last digit of NUMBER is NOT the number 1, the test will be false.

a.​ If the test returns as false, the operation will move onto the next “if statement”,

where the argument is “Is the last digit of NUMBER the number 2?” and vice

versa.

b.​ If the last digit of NUMBER is not “1”, “2” or “3”, the test at the end will return

as false and the operation will output the value “th”. For example, “4” will

cause the test to return as false and the operation will output the value “th”.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Operation Number 2

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

7.6.10.​ This second operation will be titled “st,nd,rd,th last 2”. “st,nd,rd,th last 2” will detect

the last two digits of NUMBER and will output the appropriate ordinal.

7.6.11.​ Casting our mind back to how “if statements” work, the if function takes three

arguments:

1.​ The block in red: a logical test. In this case, the test is “Are the last two digits of

NUMBER the number 11?”

2.​ The block in orange: the value to be returned if that test is true. In this case, if the

last two digits of NUMBER are the number 11, the test will be true and the value “th”

will be returned.

3.​ The block in green: the value to be returned if the test is false. In this case, if the

last two digits of NUMBER are not the number 11, the test will be false.

c.​ If the test returns as false, the operation will move onto the next “if statement”,

where the argument is “Are the last two digits of NUMBER the number 12?”

and vice versa.

d.​ If the last two digits of NUMBER are not the numbers “11”, “12” or “13”, the

test at the end will return as false. The operation will then move onto the

operation “st,nd,rd,th” that we discussed above.

i.​ For example, “14” will cause the test to return as false and the

operation will move on to the operation “st,nd,rd,th”. After the number

“14” passes through that argument, it will be outputted as “th”.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Final steps

7.6.12.​ Now that we have our 2 operations, we will return to the “document area”. Insert the

operation titled “st,nd,rd,th last 2” into the document behind the placeholder titled

“number”. The operation will now work as intended!

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

7.7.​ Introduction to calculations in a table

7.7.1.​ This section will show you how to perform calculations in a table utilising functions

from Math.

7.7.2.​ In this instance, we would like a sum of the number of shares at the bottom of its

respective column. We would also like a sum of the shareholding percentage at the

bottom of its respective column.

7.7.3.​ As such, we will create placeholders for the Investor Shares and Shareholding

Percentage:

7.7.4.​ Now, we will navigate to the Operations tab to create the relevant operations.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

7.7.5.​ When you have completed setting up your operations, return to the “document”

section and add the operations to the table as such. Ensure that a “%” sign is added

at the back of “TOTAL SHAREHOLDING PERCENTAGE”.

7.7.6.​ When creating the document, fill out the questions as directed. Your operation should

function like this:

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

7.7.7.​ Other calculations can also be performed in a table like this. Do refer to the Math

section on how this can be done.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

7.8.​ Complex Calculations in a table

●​ Calculate the total sum in each column

●​ Transform these figures into their respective percentage values

●​ Round the figures to 1 decimal place

7.8.1.​ First, import or create a table in the editor. For the purpose of demonstration, we will

create a table for the total shareholding of a company. There are four groups of

shareholders: Main Shareholders, Directors, Employee Share Scheme and Other.

7.8.2.​ For the column to show the total number of shares held by each group, create a

placeholder. E.g. ‘main_shareholder_no’. Then go into the questionnaire and

customise the question for this attribute (main_shareholder_no) to something such

as: “provide the total number of shares held by the Directors”. Update the question

format to ‘Number’, so users can only enter a number into the input field.

7.8.3.​ Do the same for each group, so that they all have a placeholder.

7.8.4.​ To calculate the total number of shares in the column we need to create an operation

using ‘Sum’ (there are more than two values).

7.8.5.​ Go into the operations area and create a new Operation - e.g. “Total_Share”. Use the

Sum attribute as the top string.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

7.8.6.​ For the first argument, use attribute and select “main_shareholder_no”. Then, add

another attribute, selecting ‘Director_no’ - and so on. This will add together each

attribute.

7.8.7.​ Go back into the document, click on the ‘insert quick operation’ button and add the

operation where the total number of shares should appear.

Turn each value into a percentage

7.8.8.​ In Avvoka, you are able to perform numerous calculations within the same operation,

or draw out the output of previous operations into a new one. Here, we want to divide

the number of shares for each group by the total amount: [(A / total) x 100].

7.8.9.​ To prevent each number from having multiple decimal places, we also want to round

the number to 1 decimal place.

7.8.10.​ In the first string, use the ‘Round’ operation.

7.8.11.​ In the second string use ‘Multiply’. This will multiply the decimal place by 100 to give

us a percentage value: [(A / total) x 100].

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

7.8.12.​ In the third string use ‘Divide’. The result of this calculation is the one I intend to

multiply by 100: [(A / total) x 100]. The first argument is the attribute e.g.

‘main_shareholder_no’. The second argument is the number I am dividing by. Use

‘attribute’ again and select “Total_Share”.

7.8.13.​ The string below this is the number I am multiplying by. Make sure the format is

‘Number’ and choose the number you would like to use, e.g. 100.

7.8.14.​ The final number is related to ‘Round’. We use the ‘Text’ format. Each number

determines how many decimal places you would like to round the number to. In this

example, we have chosen only 1.

7.8.15.​ Repeat this operation four times, changing where we used the attribute

‘main_shareholder_no’ to reflect the number of shares held by each group of

shareholders.

​

Calculate total percentage

7.8.16.​ As demonstrated in the first part of this example, now use the operation ‘Sum’ to

calculate the total percentage.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

7.8.17.​ Where Sum is the first string, use Attribute and select the names of each operation

used to calculate the percentage to add these together.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

8.​ Worked Examples on Loops

8.1.​ Creating plural text when there is more than one looped attribute

8.1.1.​ In a template, you may have a situation where an attribute may be looped multiple

times or not at all. If the attribute is looped multiple times, you may wish to have a

word change to a plural form. If the attribute is not looped at all, it will remain singular.

8.1.2.​ For example, in the case where the looped attribute is “Office Location”, you may

wish to have the word “offices” appear if there is more than one office provided.

However, if only one office is provided, you would want “office” to remain singular.

8.1.3.​ First, we will have to create a looped attribute in the editor. To do so, create your

desired placeholder. In this scenario, we have created the placeholder

“Office_Address”.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

8.1.4.​ Then, highlight the placeholder with your cursor and click on the button in your

Automation tab in the top toolbar to create a loop over them. Your highlighted text

will then be housed in a blue loop container.

8.1.5.​ Now, navigate to the Operations Tab and construct the following Operation.

8.1.6.​ To break it down, with reference to how a “greater than” block works:

●​ Greater than: If the value of the Orange block is greater than the value of the

Green block, the operation will evaluate the comparison to be “True”.

●​ Orange block: the value of the number of times the attribute “Office_Location” has

been looped.

●​ Green block: the value “1”

8.1.7.​ Essentially: If the number of times “Office_Location” is looped is greater than 1, the

Operation will output the value “true”.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

8.1.8.​ Now, we will return to the document. Type the word “Offices” and add an in-line

condition to the “s” at the back of it. We will set it up such that the “s” will appear if the

relevant Operation returns as true.

8.1.9.​ We have used an inline loop to display the office locations in an array. This uses the

operation titled ‘Office Locations’, which has been added to the document shown in

the image above.

8.1.10.​ To create this operation, wrap the looped attribute with a block condition, using a

value that will not be met so that it doesn’t show in the document. See more on

creating an inline loop here.

8.1.11.​ Your operation should now work as intended. If only one office location is provided,

then the document should read as “office”.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

8.1.12.​ If multiple colours are inputted, then the document should read as “offices”, as shown

at the beginning of this article.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

8.2.​ In-line loops

8.2.1.​ This will show you how to display your looped responses in one single line, rather

than multiple lines.

8.2.2.​ To start off, create a placeholder in your document. Then, highlight the placeholder

with your cursor and click on the button in your Automation tab in the top toolbar

to create a loop over them. Your highlighted text will then be housed in a blue loop

container.

8.2.3.​ NOTE: If you do not want the original placeholder to display in the template body

itself, you can hide the loop. To do so, highlight the entire placeholder and create a

block condition over it.

●​ Set the attribute value to be any existing attribute.

●​ Set the final value to a value that will never be met by the attribute. (like below)

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

8.2.4.​ As such, this block condition will never be met. Hence, the loop and attribute will

never appear in the final document. Your editor should now look like this.

8.2.5.​ Now that we have created our looped placeholder, create the following operation.

This is a Join operation with up to four arguments:

●​ Looped Attribute (Attribute as array): The name of the attribute that corresponds

to the looped placeholder. (Required)

●​ Default Separator (Text): The separators that you want between each looped

response. So in this example if you want to display your answers as “Answer 1,

Answer 2, Answer 3” you should use “, “ as the separator, including the space after

the comma. (Required)

●​ Penultimate Separator for more than 2 iterations (Text): The separator

distinguishes between the penultimate and final iterations of your attribute. For

instance, if you plan to display your answers as 'Answer 1, Answer 2, and Answer 3,'

then specify ', and' as the penultimate separator.

*N.B. Ensure that you include the desired spacing in this argument.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

​

●​ Separator for two iterations (Text): An optional separator for specifying a separator

for if there are only two iterations of the looped attribute. For example, if you want to

showcase your answers as 'Answer 1 and Answer 2,' employ ' and ' as the separator.

*N.B., make sure there is space both before and after 'and’.​

​ ​

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

8.2.6.​ You can then insert the operation directly into the template itself using the “Quick

Operation” button in the Automation tab.

8.2.7.​ Above is an example of how your content will appear when a document is created.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

8.3.​ Automatic list separators across loops

8.3.1.​ Using operations as conditions, you can set up automatic list separators to work

across loops. For example, you may need to list multiple entities in a document’s

preamble under the same party as such:

8.3.2.​ First, set up the placeholders you would like to loop as well as the separators in the

editor. Be sure to account for any line breaks in your separators as well. To ensure

that line breaks are accounted for in the block condition, press on your Tab key to

insert a tab space.

8.3.3.​ You may also want to insert any character after the tab space so it will be easier to

highlight the line break later when you need to set up a block condition. This

character can be removed after the block condition has been created. In this

example, an x has been inserted after the tab space.

8.3.4.​ Second, highlight all placeholders and separator text with your cursor then click on

the button in your Automation tab in the top toolbar to create a loop over them.

Your highlighted text will then be housed in a blue loop container.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

8.3.5.​ Next, set up block conditions over each separator. These block conditions will contain

an operation which counts which compares the number of times the loop has been

utilised to which iteration of the loop a certain value is. This will determine which

separator is inserted as a block.

8.3.6.​ To do so, the operation will not be set up in the typical operations menu. Instead, it is

set up in the template editor directly within the condition builder, but in rendering

mode which allows you to construct operations in the condition builder directly. You

can switch to rendering mode by clicking on the toggle in the top right corner of

your condition builder.

8.3.7.​ We will first set up the operation needed for the “and” separator along with the line

break.

8.3.8.​ The operation built consists of two arguments nested in the Greater than function.

The first argument returns a value reflecting the total number of times an attribute has

been looped. First, add a Count function, then within it, add an Attribute as array

function. In the dropdown menu, select any of the attributes which are in the relevant

loop. This attribute will serve as the “count” for the argument.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

8.3.9.​ The second argument numbers each instance of the loop according to which

instance of the loop the value belongs to. For example, the 1st instance of the loop

will return a value of 1, the 3rd instance a value of 3, etc. For this argument, insert the

Iterator function. You can leave this function empty.

8.3.10.​ Thus, this block condition is triggered if the value drawn from the first argument (the

total number of looped instances) is greater than the second argument (the Xth

instance of the loop, where X is the value being examined). Click “apply” to apply the

condition. This will create a green block container over “and” and the line break. You

can now delete the x as it was there only to allow you to highlight the line break

easily. However, leave the tab space there.

8.3.11.​ You can set this up similarly for the final separator. However, instead of using the

Greater than function, you will use the Equals function. The two arguments within

the Equals function remain the same.

8.3.12.​ Thus, when the value drawn from the first argument (the total number of looped

instances) is equal to the second argument (the Xth instance of the loop, where X is

the value being examined), the block condition will be triggered.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

8.4.​ Extracting one of the answers from a looped question

8.4.1.​ After you have set a loop such as the one below, you may wish to extract a particular

value from the looped answers. Below, we have successfully extracted the third

answer out of all the looped questions.

8.4.2.​ We will have to build the following Operation to extract the relevant looped input.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Join: Join will link up the outputs from the questionnaire

Map: Map is simply the function which is used to tie all
of the nested components together

Text: The text “i” functions as a label to tie the looped
attributes together

Note that the text “i” is reiterated in the “Iterator”
section below

Number: These numbers signify the range of values to be
extracted from the looped answers. The top
number refers to the first number in the range
while the bottom number refers to the last number
in the range

In this case, since we are simply extracting the
third output from a loop, we will set both numbers
to “3”

Iterated
Attribute:

Attribute
●​ The looped Attribute

Iterator

●​ The Iterator inputs function as a label to tie
the looped attributes together and this
label is named earlier in the operation

●​ Since the label we used earlier in the
operation was the text “i”, we will reiterate
it here to tie the looped attributes together

8.4.3.​ You can then insert the operation directly into the template itself using the “Quick

Operation” button in the Automation tab.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

8.5.​ Display multiple placeholders within a loop in an inline list

8.5.1.​ When unmodified, loops display each iteration as a separate paragraph. However,

you may want to have the looped values contained within a single line or even within

a paragraph. If there are multiple placeholders within that loop, each set of values

may need to be grouped together as well.

8.5.2.​ For example, in this screenshot, a loop was set up over the “Chapter” and “Page”

lines, hence the repeat. However, using an operation, we can consolidate the entries

into a single line.

8.5.3.​ Click here for a video guide showing how to construct the operation. If you are

interested in the explanation of how the operation works, please read on.

The set-up

8.5.4.​ First, insert the placeholders you want to loop into your editor. These can be placed

anywhere in the document as they will be made “invisible” using an unfulfillable block

condition. When the placeholders have been inserted, highlight them and click

under the Automation tab. A blue container will appear over the placeholders.

8.5.5.​ Next, highlight the same text and insert a block condition, making sure to set it up

such that this block condition can never be fulfilled. For example, I have used

CHAPTER = decoy answer.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

https://vimeo.com/639381200
mailto:info@avvoka.com
http://www.avvoka.com

8.5.6.​ Apply the condition and you should now see the light green block condition container

overlaying the loop blue container. This way, you can avoid having to show the

repeated loops which will take up multiple paragraphs of space and instead have only

the operation visible.

How to build the operation

8.5.7.​ To see how to build the operation, please refer to this video.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

https://vimeo.com/639381200
mailto:info@avvoka.com
http://www.avvoka.com

The “core” of the operation

8.5.8.​ Concatenate is used to join up the four arguments of Text, Iterated attribute, Text, and

Iterated attribute respectively. We will look at each argument to build how this should

look.

8.5.9.​ First Text Argument:

●​ This is a text input containing “chapter ”. Note that a space (which is not visible

here) is deliberately inserted after the word “chapter”. This is to leave a space

between “chapter” and the next argument, which would in this case return the

Chapter number.

●​ At this point, if the operation was in effect, it will return “chapter ”.

8.5.10.​ First Iterated attribute argument

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

●​ Iterated attribute contains the attribute which you wish to loop. When you insert

an Iterated attribute input, an empty Attribute input will automatically be nested

within it. Select the attribute you wish to loop - in this case, it is CHAPTER.

●​ Under this Attribute input, insert an Iterator input. This input is the label of the

loop which would be named in a Text input earlier in the operation (this will be

shown below). The label can be anything but it is named a generic “loop” here.

The naming of this Iterator input is crucial as it is used to link this Iterated

attribute input with the next.

●​ At this point, if the operation was in effect, it will return “chapter A”.

8.5.11.​ Second Text argument

●​ This is a text input containing “, page ”. Again, there is a space after “page” to

maintain a space between “page” and the page number drawn from the next

input.

●​ At this point, if the operation was in effect, it will return “chapter A, page ”.

8.5.12.​ Second Iterated attribute argument

●​ Similar to above, the attribute you want to loop here is PAGE. Note that the

Iterator input is named identically to that in the first Iterated attribute input.

●​ At this point, if the operation was in effect, it will return “chapter A, page 1”.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Map input

Map is simply the function which is used to tie all of the
nested components together. It is the function used to
kickstart this entire process of an inline loop operation.
Ultimately, the Map input loops whatever is contained
below the orange box.

Green boxes

As mentioned above, the Iterator inputs function as a label
to tie the looped attributes together and this label is
named earlier on in the operation.

This naming is done in the first instance of the green box
using a Text input.

Orange box

The two arguments in the orange box serve as the range
from which the Xth instance of answers to the looped
questions in the questionnaire should be included. Here,
Number is 1, meaning that the loop will include all values
from the first instance. Conversely, if Number was 2, the
answers to the first instance of the question will be
ignored and only the subsequent questions will be
considered. If there is a set upper limit, you can simply
insert another Number input in the place of the Count
operation.

Alternatively, if there is no upper limit, the Count operation
can be used. The Count operation counts the number of
times this attribute has been looped in the questionnaire
and returns it as a number. For example, if I have looped
the CHAPTER question four times, the Count operation
will return 4. This means the upper limit is 4. That said,
since Count will always return the total number of times
looped, it is able to function as an endless upper limit.

Red boxes

Finally, you use the Join operation to link up the multiple
outputs you have. Here, Join wraps all other components
such that they form the first argument and has a final 2nd
argument of “; ”. This serves as a separator for each
return. For example:

chapter A, page 1; chapter B, page 3

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

8.6.​ Row: extract a specific index item in an array

8.6.1.​ Row helps to extract a specific index item in an array. For instance, a looped attribute

could be ["1", "2", "3", "4"]. So, the row operation in this case would then have 2

parameters:

1.​ A Text parameter for the index that you want to extract (e.g. "2"); &

2.​ An Attribute parameter that points to the looped attribute that you're extracting

from.

8.6.2.​ The row operation essentially allows you to choose which iteration you want to take

from a loop. For instance, in a case where you want the third answer from the loop

somewhere else, row would help you to find that one specifically.

8.6.3.​ A standard operation would constitute:

●​ Row containing two arguments, out of which the text argument refers to which

number of the index you want to choose (i.e. 1st, 2nd, 3rd);

●​ The attribute is the looped attribute; and

●​ Join converts the resulting array into a string (removing brackets and quotation

marks)

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

8.6.4.​ In the example below, the row operation has been used in the template to pick out

answers 1,3 and 5 specifically. If 5 loops are created, the row operation would help

pick up the three answers.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

8.7.​ Worked Examples for Dictionary

8.7.1.​ ‘Dictionary’ and ‘Reference’ are two operations amongst many present in Avvoka.

For using the ‘Dictionary’ operation, a ‘Reference’ is used as well. While

‘Reference’ can be found under an ‘Array’, ‘Dictionary’ is present under ‘Inputs’. A

user is able to define concepts using these operations. For instance, if you have an

attribute named ‘seller’ then you are going to have a text: seller has but if the

attribute is ‘sellers’ it will say: sellers have.

8.7.2.​ To add a reference and dictionary operation, access the ‘Operations’ tab in the left

side pane and then click the blue + button as shown below.

8.7.3.​ Now, add an operation by clicking the relevant button and choose ‘Reference’, then

add ‘Dictionary’ under it.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

8.7.4.​ Next, choose ‘Text’ which is the first option present under ‘Inputs’, and add a word.

8.7.5.​ For instance, in the example below, various texts have been added including: Seller,

Seller has, Sellers, and Sellers have. Selecting ‘Seller’ would populate ‘Seller has’

in the document whereas choosing ‘Sellers’ would populate ‘Sellers have’.

8.7.6.​ Then, navigate to the ‘Document’ tab on the left side pane and under the

‘Automation’ tab present in the blue bar, click the operations button which when

hovered over, says: Insert quick operation. This will prompt a window to open with

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

a drop-down list. Then, select the operation you have created to add into the

document.

8.8.​ Worked Examples for At

8.8.1.​ This function allows you to extract a specific index item in an array similar to rows,

except it is specific to non-looped arrays. For instance, the array could be ["A", "B",

"C", "D]. Now, if you want to pull value 2 from the array, you will need to subtract 1

from this number as it takes the index of the array to start from 0 rather than 1.

8.8.2.​ There would be two parameters for this:​

1.) The array parameter that you want to pull the value

2.) The number parameter for the index of the array that you want to pull values from

Please note that you will need to subtract 1 from this number as it takes the

index of the array to start from 0 rather than 1.

8.8.3.​ A standard ‘At’ operation would constitute:

1.) The first argument would be the array through which you fetch the value from

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

2.) The second argument would be the number for the index of the array of the value

you want

8.8.4.​ The following example utilises the ‘At’ operation to extract a specific value from an

array, particularly for arrays without loops. To create an ‘At’ operation, select it from

under the array column. Then, choose ‘Attribute’ from the Inputs column and

attribute an attribute like in the given example below.

8.8.5.​

Then, choose ‘Subtract’ under the Math column and add an attribute there. For

instance, in the example below, the selected attribute is: number. Then, select

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

‘Number’ from the Inputs column and enter the value: 1. This way, the number the

user enters will be subtracted by 1.

8.8.6.​

You can now see that the desired value B has been extracted in the example below

using the ‘At’ operation when 2 was entered as input.

8.9.​ Worked Examples for Sysdate

8.9.1.​ This function enables users to retrieve the creation date of a document for display or

use in other operations. Note: It is important to specify a Date Format to ensure that

the retrieved date is formatted according to specific and desired requirements.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

8.9.2.​ To use this operation, follow the steps below:

1.​ Select ‘Sysdate’ from the ‘Localisation’ column in Operations.

2.​ Then, select the ‘Date document was created’ option from the drop down menu to

add in under Sysdate.

3.​ Now, insert the operation in the Document.

You can test it by creating the document where the date of the document creation (i.e.the

current date) would automatically populate in the document.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

9.​ Additional support

9.1.1.​ You can ask us a question by clicking on the support button (). A window will

open and you can type your questions there. Our staff will be able to help you during

business hours.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

9.1.2.​ For additional support, contact help@avvoka.com or call +44(0)20 3519 2237.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

10.​ Archived Worked Examples

Numbers in Ordinal Form (Regex)

10.1.1.​ Below is a short list of Cardinal Numbers vs Ordinal Numbers.

Cardinal Numbers Ordinal Numbers

1 1st

2 2nd

3 3rd

4 4th

5 5th

10.1.2.​ If you would prefer to just create the operation, simply follow this video. However, if

you would like to understand how the operation works, do read on.

The general logic of the operation set

10.1.3.​ The operation set that we are creating will ensure that all numbers inputted will be

outputted as Ordinal Numbers. This would be simple if all the numbers ended in a

“th”. However, as can be seen above, “1st”, “2nd” and “3rd” do not end with a “th”.

10.1.4.​ A solution to this would be to set up an argument that detects when the number “1”,

“2” or “3” appears at the end of a string of numbers. Once those numbers are

detected, the appropriate ordinals will appear at the end of the string. (Operation Set

Number 1)

10.1.5.​ However, a problem arises when we realise that “11”, “12” and “13” also end with “1”,

“2” and “3”. But, their appropriate ordinals are “th”. If we were to only have the above

argument, they would appear as “11st”, “12nd” and “13rd”.

10.1.6.​ To solve this problem, we will have to add another argument that detects when the

numbers “11”, “12” or “13” appear at the end of a string of numbers. Once those

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

https://vimeo.com/645100347/d0d2cdb2fc
mailto:info@avvoka.com
http://www.avvoka.com

numbers are detected, the appropriate ordinal “th” will appear at the end of the string.

(Operation Set Number 2).

Setting up the number attribute

10.1.7.​ First, we will have to set up an attribute that will allow us to input a number. In this

case, a placeholder titled “number” has been created.

Operation Set Number 1

10.1.8.​ Operation Set Number 1 is made up of two operations:

1.​ The first operation removes all digits from a number except for the last number in the

string. For example, “987654321” will be outputted as “1”.

2.​ The second operation detects the output from the first operation and outputs the

appropriate ordinal. For example, the operation will detect the output “1” from the

previous operation and will output the ordinal “st”.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

10.1.9.​ Above is the first operation. In this example, the operation has been given the name

“regex”. With reference to how a “Regex Replace” block works:

●​ Attribute: The string that will be modified. In this case, the attribute “number” has

been inserted.

●​ Text: The expression that will be replaced by the Text block below it. In this case, the

expression in the first Text box is “/(.)(?!$)/”. This is a regular expression which

selects every digit except for the last digit in a string of numbers.

●​ Text: This is what should replace each of the matches listed in the above Text box. In

this case, this text box is blank.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

https://regex101.com/
mailto:info@avvoka.com
http://www.avvoka.com

10.1.10.​ This operation is replacing every single digit before the final digit with a blank. In the

number “987654321”, the digits “98765432” will be replaced with a blank, leaving the

number “1”.

10.1.11.​ As such, this operation titled “regex” will only output the final digit in a string of

numbers.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

10.1.12.​ Now that we have our output from the operation titled “regex”, we will create a

second operation. This operation will be titled “st,nd,rd,th”. This second operation

“st,nd,rd,th” will detect the output from the first operation (the final digit of the number)

and will output the appropriate ordinal.

10.1.13.​ Casting our mind back to how “if statements” work, the if function takes three

arguments:

4.​ The block in red: a logical test. In this case, the test is “Does the output from regex,

the final digit of the number, contain the number 1?”

5.​ The block in orange: the value to be returned if that test is true. In this case, if the

output from regex contains the number 1, the test will be true and the value “st” will

be returned.

6.​ The block in green: the value to be returned if the test is false. In this case, if the

output from regex does not contain the number 1, the test will be false.

a.​ If the test returns as false, the operation will move onto the next “if statement”,

where the argument is “Does the output from regex, the final digit of the

number, contain the number 2?” and vice versa.

b.​ If the output from regex does not contain “1”, “2” or “3”, the test at the end will

return as false and the operation will output the value “th”. For example, “4”

will cause the test to return as false and the operation will output the value

“th”.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Operation Set Number 2

10.1.14.​ Operation Set Number 2 is made up of two operations:

1.​ The first operation removes all digits from a number except for the last two numbers

in the string. For example, “9876543211” will be outputted as “11”.

2.​ The second operation detects the output from the first operation and outputs the

appropriate ordinal. For example, the operation will detect the output “11” from the

previous operation and will output the ordinal “th”.

10.1.15.​ Above is the first operation. In this example, the operation has been given the name

“regex last 2”. With reference to how a “Regex Replace” block works:

●​ Attribute: The string that will be modified. In this case, the attribute “number” has

been inserted.

●​ Text: The expression that will be replaced by the Text block below it. In this case, the

expression in the first Text box is “/(.)(?!.?$)/”. This is a regular expression which

selects every digit except for the last two digits in a string of numbers.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

https://regex101.com/
mailto:info@avvoka.com
http://www.avvoka.com

●​ Text: This is what should replace each of the matches listed in the above Text box. In

this case, this text box is blank.

10.1.16.​ This operation is replacing every single digit before the final digit with a blank. In the

number “9876543211”, the digits “98765432” will be replaced with a blank, leaving

the number “11”.

10.1.17.​ As such, this operation titled “regex last 2” will only output the final two digits in a

string of numbers.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

10.1.18.​ Now that we have our output from the operation titled “regex last 2”, we will create a

second operation. This operation will be titled “st,nd,rd,th last 2”. This second

operation “st,nd,rd,th last 2” will detect the output from the first operation (the final

two digits of the number) and will output the appropriate ordinal.

10.1.19.​ Casting our mind back to how “if statements” work, the if function takes three

arguments:

4.​ The block in red: a logical test. In this case, the test is “Does the output from regex

last 2, the final two digits of the number, contain the number 11?”

5.​ The block in orange: the value to be returned if that test is true. In this case, if the

output from regex last 2 contains the number 11, the test will be true and the value

“th” will be returned.

6.​ The block in green: the value to be returned if the test is false. In this case, if the

output from regex last 2 does not contain the number 11, the test will be false.

c.​ If the test returns as false, the operation will move onto the next “if statement”,

where the argument is “Does the output from regex last 2, the final two digits

of the number, contain the number 12?” and vice versa.

d.​ If the output from regex last 2 does not contain “11”, “12” or “13”, the test at

the end will return as false. The operation will then move onto the operation

“st,nd,rd,th” that we discussed above.

i.​ For example, “14” will cause the test to return as false and the

operation will move on to the operation “st,nd,rd,th”. After the number

“14” passes through that argument, it will be outputted as “th”.

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

Final steps

10.1.20.​ Now that we have our 4 operations, we will return to the “document area”. Insert the

operation titled “st,nd,rd,th last 2” into the document behind the placeholder titled

“number”. The operation will now work as intended!

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

11.​ Changelog

Set out below are the major changes to this operations guide:

Date Description Document
Version

23/03/2021 New Operations Guide Format 1.0

1/06/2022 Added Date Operations 1.1

10/02/2023 Updated Ordinal Number Operation
Added new text Operations

1.2

E-mail: info@avvoka.com | Website: www.avvoka.com | Telephone: 020 3865 5899

Registered in England & Wales with no.: 09729807 | Registered office: 2.05 12-18 Hoxton Street, London, England, N1 6NG | VAT number: 234 6111 39

mailto:info@avvoka.com
http://www.avvoka.com

	Operations Guide 2024
	Contents
	Avvoka Operations Guide
	1.​Background
	1.1.​Introduction
	
	1.2.​Creating an Operation
	1.3.​Operation library
	1.4.​Explanatory note
	Connective Inputs
	Functional Inputs

	2.​Connective Operations
	2.1.​Inputs
	
	2.2.​Comparison
	2.3.​Logic

	3.​Functional Operations
	3.1.​Math
	3.2.​Text
	
	3.3.​Localisation
	Commonly-used locales
	Date format codes
	
	3.4.​Array

	Worked Examples
	4.​Making use of “true”/”false” values
	5.​Worked Examples on Dates
	5.1.​Long Date
	5.2.​Date Format
	5.3.​Bespoke Date Format (eg. US Date Format)
	
	5.4.​Bespoke Date Format (Date in Spanish)

	6.​Worked Examples on Lists
	6.1.​Comparing a value against a list

	7.​Worked Examples on Numbers
	7.1.​In Words
	7.2.​In Words: Numbers with Commas into Words
	
	
	7.3.​In Words: Money
	7.4.​Format Number
	7.5.​With Precision - Including 0’s when rounding numbers
	7.6.​Numbers in Ordinal Form
	7.7.​Introduction to calculations in a table
	7.8.​Complex Calculations in a table

	
	8.​Worked Examples on Loops
	8.1.​Creating plural text when there is more than one looped attribute
	
	8.2.​In-line loops
	8.3.​Automatic list separators across loops
	8.4.​Extracting one of the answers from a looped question
	8.5.​Display multiple placeholders within a loop in an inline list
	8.6.​Row: extract a specific index item in an array

	8.7.​Worked Examples for Dictionary
	8.8.​Worked Examples for At
	8.9.​Worked Examples for Sysdate
	9.​Additional support
	
	10.​Archived Worked Examples
	Numbers in Ordinal Form (Regex)

	11.​Changelog

