Extreme LUD explainer

Yuki Shiino <yukishiino@chromium.org>

Overview

The Extreme LUD (Lightweight Use-after-Free Detector) is another variant of LUD, originally
proposed in this doc.

As introduced in the design doc of LUD, we already have many UaF (Use-after-Free)
detectors such as GWP-Asan, BRP, and LUD. Among them, the Extreme LUD aims to be
extremely lightweight while giving up a lot of useful features. Maximizing the coverage (i.e.
minimizing the runtime cost) is the primary focus for the Extreme LUD. The Extreme LUD is
unique on this point. Other than that, the Extreme LUD is similar to the existing UaF
detectors.

Basic mechanism

The basic mechanism is quite the same as LUD.

1. [Intercept] When a program deallocates an object, the Extreme LUD intercepts the
deallocations on a sampling basis (e.g. 1% sampling) so that it will not regress the
program performance much.

2. [Zap] The Extreme LUD zaps the memory chunk used for the object so that reading
data from the (already-deallocated) object will likely crash.

3. [Quarantine] The Extreme LUD quarantines the object for some time so that the
memory chunk will not be re-used for another object.

4. [Dequarantine] When the quarantine capacity is full, the Extreme LUD
de-quarantines some of the quarantined objects (i.e. actually deallocates the memory
and returns it to the underlying memory allocator, allowing it to be allocated again).

The original LUD does collect a stack trace in addition when it intercepts a deallocation so
that debugging will be easier. The Extreme LUD focuses on the runtime performance and
doesn't collect any additional data in the first version. (There is a future plan to collect the
type information of the being-deallocated object if we can implement it without regressing the
performance much.)

The crash reports caused by the Extreme LUD will contain the crashing address specific to
the zapping pattern of the Extreme LUD. So, we can tell whether a crash comes from the
Extreme LUD or not. When it's from the Extreme LUD, it's likely to be a UaF bug or OOB
(Out-Of-Bounds) bug.


mailto:yukishiino@chromium.org
https://docs.google.com/document/d/1xfGa_IMtFZiQ3beOmkncEafODwn4U90ZyL4NfPaAtDY/edit?usp=sharing&resourcekey=0-89BZl1SVILB6ylOHula0IA
https://docs.google.com/document/d/1qXkZ_mAEAyqo_7Tlg6HIYlSUep2kmbcsPoPRRinhRco/edit?usp=sharing
https://docs.google.com/document/d/1xfGa_IMtFZiQ3beOmkncEafODwn4U90ZyL4NfPaAtDY/edit?usp=sharing&resourcekey=0-89BZl1SVILB6ylOHula0IA

Security considerations

The Extreme LUD should have no negative impact on security, and the positive impact is
minimal.

Even without the Extreme LUD or any sort of UaF detectors, a program with a UaF bug has
a chance to crash when a deallocated memory chunk is re-used for a new object and the
memory is overwritten with a new value and then the program reads the overwritten memory
as UaF. The Extreme LUD just increases the chance to crash by zapping the memory
immediately.

The quarantine doesn't change the game either. A deallocated memory chunk may or may
not be re-used immediately. It highly depends on a memory usage pattern of the program
and an algorithm of its memory allocator. The quarantine just makes the time until a memory
chunk gets re-used longer so that the program has more chances to crash. This is meant to
catch incidental accesses, but can be easily worked around by an attacker.

The goal of the Extreme LUD is not to mitigate any security issue, but to detect UaFs. It
doesn't really affect security.

Privacy considerations

The Extreme LUD does not collect any user data except for UMA histograms (how many
objects are quarantined, how long time objects are quarantined, etc.). The Extreme LUD has
no impact on privacy.

List of UMA metrics (source)

Name' What
Count How many objects the quarantine holds currently.
SizelnBytes How many bytes in total the quarantine holds currently. (The

total byte size of the all quarantined objects.)

CumulativeCount How many objects in total have been quarantined in the process
lifetime. (Some objects have already been dequarantined.)

CumulativeSizelnBytes | How many bytes in total have been quarantined in the process
lifetime.

QuarantineMissCount | How many times we gave up quaranting objects due to
insufficient capacity of the quarantine in the process lifetime.

BytesPerMinute How many bytes of objects are quarantined in the last minute on
average.

CountPerMinute How many objects are quarantined in the last minute on
average.

' "Malloc.ExtremeLUD." prefix is omitted. "Count" is actually "Malloc.ExtremeLUD.Count".


https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/metrics/process_memory_metrics_emitter.cc;drc=3e79aface557755e09fd9a58f53da14bebf3eb1f;l=336-356

MissCountPerMinute

How many objects are not quarantined due to the capacity
constraint in the last minute on average.

QuarantinedTime

How long an object will be quarantined until it gets
dequarantined due to the capacity constraint (estimation based
on BytesPerMinute).




	Extreme LUD explainer 
	Overview 
	Basic mechanism 
	Security considerations 
	Privacy considerations 

