
Continuous Versions RFC 

Background 
The solidifying industry best practice, as supported by research and practice, is to modify 
systems by deploying small changes rapidly to production in a continuous and incremental 
fashion. 
 
Implementing such a process can cause friction with a variety of different software change 
management approaches.​
​
Continuous Versions is a proposal for enabling distributed projects to enjoy low lead times and 
continuous integration.  It does so by enhancing semantic versioning with a few additional 
conventions. 

Solution 
Follow these rules to implement Continuous Versions: 

Never increment MAJOR or MINOR version numbers​
Never ship breaking changes for active PATCH versions​
Maintain a record of the END-OF-LIFE PATCH version​
Provide push notifications of new PATCH versions 

 
Start off with 1.0.0.  The next release would be 1.0.1, then 1.0.2, and so on.  There are two 
options for shipping breaking changes: 
 

●​ Create a new package 
●​ Phase out the old functionality and update the END-OF-LIFE patch version 

 
Push notifications enable package consumers to minimize lead time by deploying changes to 
production in a timely and automated fashion.  Consumers can either set package 
dependencies to a range (^1.0.0), or can use tools like dependabot or renovate to update via 
automation. 
 
Packaging systems are recommended to maintain a reverse lookup listing every PACKAGE 
dependent on a given (PACKAGE, VERSION), along with statistics on the number of installs.  
This can help a PACKAGE maintainer make productive decisions. 



Problems 

Problems with Semantic Versioning Packages 
Semantic Versioning has two major problems.  It encourages feature branches and breaking 
changes.  Details on these problems are described below. 

MAJOR versions are breaking changes 
●​ Semver implies that releasing major version upgrades is as easy as incrementing a 

counter. 
●​ Most successful packages don’t increment the major version. 
●​ When a package does succeed at incrementing the major version, it does so with 

significant effort outside the packaging system. 
●​ It is not uncommon to create aliases to support different major versions inside of a 

project.  I.e. PACKAGE-v1 and PACKAGE-v2 
 
The major version of semver is a dangerous feature.  If a feature is rarely used and difficult to 
use correctly, one should consider removing it. 
 

MINOR version are feature branches 
●​ Maintaining feature branches for MINOR versions increases the friction of project 

maintenance 
●​ Often older MINOR branches are un-maintained. 
●​ Aggregating enhancements into larger MINOR releases increases the potential for 

incompatibility 
●​ It is easier and safer to release changes continuously to production 

 

Lead Time Impact of Upstream and Downstream Deployments 
Often a package is in one repo and is consumed by a system in another repo.  It commonly 
takes two deployments for a change in the upstream package to be running in production in the 
downstream application.  When both deployments require manual steps this increases lead 
time. 

Problems with Version Control 
If packages cause problems, then why not stick to version control? 
 
Unfortunately, version control also introduces friction. 

https://semver.org/


Problems with Git 
Git SHAs require that all parties adopt git as a version control system.  Git SHAs are not easy to 
remember, share, or communicate.  So instead, there have been multiple attempts at federating 
versions across multiple git repos. 
 

●​ Builds off a single git mono-repo tend to generate ever increasing CI times with slower 
and slower builds. 

●​ Git subtree and submodule require manual updates to the pinned version, thus sharing 
the double deployment problem. 

●​ The Android Open Source Project repo tool is a comprehensive solution, but can be 
unwieldy to line engineers 

 

Problems with Mercurial / Perforce / etc  
The author of this RFC lacks experience with every version control system.  It is conceivable 
that one exists with support for federated versions within a single continuously integrated 
product.  However these solutions still require that all parties adopt the same version control 
system.  This creates friction between teams, and certainly is unreasonable across 
organizations. 
 
 

Appendix 

Relationship to Conventional Commits 
Conventional Commits provides a way to generate semver automatically from commit 
messages.  It solves the problem of bumping version numbers automatically.  It does not 
discourage use of MAJOR or MINOR versions. 
 

https://www.conventionalcommits.org/en/v1.0.0/

	Continuous Versions RFC 
	Background 
	Solution 
	Never increment MAJOR or MINOR version numbers​Never ship breaking changes for active PATCH versions​Maintain a record of the END-OF-LIFE PATCH version​Provide push notifications of new PATCH versions 

	Problems 
	Problems with Semantic Versioning Packages 
	MAJOR versions are breaking changes 
	MINOR version are feature branches 
	Lead Time Impact of Upstream and Downstream Deployments 

	Problems with Version Control 
	Problems with Git 
	Problems with Mercurial / Perforce / etc  


	Appendix 
	Relationship to Conventional Commits 


