Verilog Docs

Modules and 1/0 Ports

Modules are defined in the format below. Each file should typically contain one
module with the same name as the file itself.

module myFirstModule(portl, port2, ...);

endmodule

Now, for the remainder of this example, suppose we have two ports. All ports must
be declared as an input or output (or both - more on that later!). We define a
module with one input and one output as follows.

module myFirstModule(
input in,
output [2:0] out
)

endmodule

The above indicates a module that takes in a 1-bit input named in - the name can
be anything you want — and produces a 3-bit output out, whose constituent bits
are labeled as bit 2 to bit 0.

Now assume we have a module topLevel that will “use” this module, i.e. integrate
the functionality of the module above as part of its overall design, with wires send
and receive corresponding to our module’s input in and output out. To
instantiate this module, you'd write the following code in topLevel.

myFirstModule instanceName(
.in(send),
.out(receive)

) E

Note that the instance name can be anything you want - it’s really only used during
simulation and in compilation logs. You can also use a shorthand format:

myFirstModule instanceName(send, receive);

In this syntax, it is implied that send maps to the first port in moduleName (a.k.a.
in) and receive maps to the second. In many cases, this shorthand is acceptable,
but sometimes for clarity’s sake you should use the first one. Use good judgment!

Numbers

Numbers in Verilog are described with the following syntax:

6'b100101
24'h3822af
/NN

nimber
format

of bits the mumber itself

Options for the number format include (b)inary, (d)ecimal, (o)ctal, and
(h)exadecimal.

Optionally, the number of bits can be omitted, in which case the number will
consist of the minimum bits required to contain the number. The number format,
when omitted, will default to decimal.

X and Z

X and Z are special bit values in Verilog.

X represents a “don’t care” bit. In typical digital circuits, the don’t-care bit is used to
indicate a value or case that is irrelevant to the circuit because it'll never be
reached. In Verilog, X is used in simulations to represent certain errors in bit
assignment; for example, if a bit is never assigned with @ or 1, or if it’s driven by
multiple combinational assignments, your simulation software may use X to
represent it instead.

Z is a “high-impedance” bit. When your module assigns Z to a wire, it pulls the wire
neither high nor low; as a result, other devices can drive that wire without causing
a short. This is often used in digital communication protocols where multiple
devices send data over the same wire.

Wires, Regs, Logic, and Bit Width

Modules have different ways of storing bits and passing them around. Recall that a
wire is used exclusively to connect different ports and modules - much like a
physical wire! On the other hand, a Verilog reg can synthesize to a latch, flipflop,
register, etc.

You would typically use reg any time you're driving your value from a clocked
always block, because you use these blocks whenever your system requires
memory; in other words, you want to reliably store a value over time. In an
always_comb block, you usually assign values to wires; this is because the value of
a wire changes instantly based on the current values of the inputs, without
reference to the past values.

Note that you cannot drive the value of a register from multiple places (within both
a combinational and a sequential block, for instance).

All that being said, SystemVerilog provides us with a handy shortcut that allows us
to never have to think about the differences: the logic keyword. logic can

essentially be used to tell the compiler to automatically figure out based on usage
whether a port should be a wire or reg.

Both wires and regs, like inputs and outputs, can contain multiple bits. We specify
the number of bits by indicating a range of indices into those bits. Typical
convention is to specify a larger number for the MSB (most significant bit) and a
smaller number for the LSB. The following lines declare a wire and reg.

8'b00001000;
4'b0010;
2'b0o1;

wire [7:0] w
reg [3:0] r
logic [1:0] 1

In each line, the bits are numbered such that the leftmost bit is indexed with the
number to the left of the colon and the rightmost bit is indexed with the number to
the right of it.

What if your left-hand and right-hand logic elements have different bit widths?
You'll want to take care to ensure this doesn’'t happen very often in your code,
because issues arising here are tricky to debug. However, the behavior goes like
this:

logic [3:0] a
logic [7:0] b

8'b00O1000;
4'b0010;

In the first case, we are assigning an 8-bit value to a 4-bit element. The result is the
most-significant four bits will be truncated. Then,a = 4'b10000.

In the second case, we are assigning a 4-bit value to an 8-bit element. If the
right-hand side is signed, then an arithmetic sign-extension (MSB of RHS operand
duplicated, whether it is O or 1), and a logical extension will be used if the
right-hand side is unsigned. Here,b = 8'b00000010.

In SystemVerilog, values are unsigned by default; an explicit declaration is needed
for something like a logic or reg value to be treated as signed. Also, mixing signed
and unsigned operands results in all operands being treated as unsigned.

Concatenation

Curly braces are used to “concatenate” or combine multiple bits or sets of bits into
one wire or reg. Read more here.

logic [3:0] 1 4'b0010;

logic [7:0] 12
logic [3:0] 13

1L, 1}
{1[1], 1[3], 1[2], 1[e]};

Left-hand side concatenation is also possible; see the examples here. Think about
why the example marked “invalid” fails, and when you would want to use left versus
right-hand side concatenation!

The assign statement

The assign keyword is used to drive a wire or individual bits in a wire with
combinational logic. It is used like so:

logic [7:0] wl, w2;

8'b01010101;
1;

assign wl
assign w2[7]

Assign statements CANNOT be used inside initial or always constructs; if you
use one, it should be outside any blocks.

The always block

The always block is a procedural construct - in other words, the lines inside all
execute sequentially*. The block is triggered based on conditions specified in a
sensitivity list, a list of ports that must change in order to trigger the always
construct.

always @(posedge clk) begin

https://www.chipverify.com/verilog/verilog-concatenation
https://stackoverflow.com/questions/11111861/direction-of-verilog-concatenation

end

This always block will run every time the port clk has a positive edge (i.e. goes
from low to high). You can also use negedge to trigger the block when the clock
goes from high to low. Omitting the keyword will cause the block to trigger on both
edges, i.e. any time c1lk changes.

If the always block is exclusively driven by a well-defined clock, your regs inside
will synthesize to properly-clocked registers and all will be well. If it’s driven by
something else, your regs will synthesize to latches instead, which is a problem.
Always trigger your always block with clocks!

You can also write an always block that synthesizes to a purely combinational
circuit. This must trigger when anything changes, so we write it in the following
way:

always @(*) begin

end

If you're using SystemVerilog (which, in DAV, we are!), we have some additional bells
and whistles, one of which is a special construct that allows the synthesizer to
detect various issues in your combinational circuit (such as latches) and raise
errors.

always_comb begin

end

Assignment Operators

There are two different ways to assign a value to a reg or wire in Verilog. The first
type is the one we've seen so far: blocking assignment, represented by an equals

sign (=):

logic ri1, r2;
always_comb begin
ri=1;
r2 = ril;
end

Blocking assignment is used in combinational blocks and indicates that we want the
assignment to finish BEFORE we move to the next line. In the block above, r1 gets
assigned the value of 1, THEN r2 gets assigned the value of r1 - which is
guaranteed to be 1 because the previous assignment has finished already.

In contrast, nonblocking assignments all occur in parallel. You must use these in
sequential blocks because delaying the execution of an assignment in a clocked
block could lead to timing violations. In the block below, r1 gets assigned the value
of some input in and r2 gets assigned the value of r1 from the previous clock cycle
(because r1’s assignment in the current clock cycle hasn't finished).

logic ri1, r2;
always @(posedge clk) begin

rl <= in;
r2 <= ril;
end
Operations

Verilog supports many arithmetic operators that you've probably seen in other
programming languages. Remember that unlike other languages you may be used
to, in a typical module, these operations will function on two sets of bits; therefore,
standard rules in bit math apply. Notably, this implies the following:

- Any and all overflow bits will be lost.
- If any operation causes a divide-by-zero error, the resulting output will be an
X (don’t-care bit).

wl = a + b;
wl =a - b;
wl = a * b;
wl = a / b;
wl =a % b;
wl = a ** b;

Verilog also supports traditional bitwise operators. If one operand is shorter than
the other, it gets zero-extended to match the length of the longer one.

wl = ~a;

wl = a & b;
wl =a | b;
wl = a ~ b;
wl = a ~& b;
wl = a ~| b;
wl = a ~" b;

if-statements and case-statements

Much like “traditional” programming languages, Verilog if- and case-statements
allow us to ensure that certain operations only happen when a condition is met. In
combinational logic, these statements will either synthesize to a multiplexer or
create a latch. In order to create a multiplexer for a reg r1, (the ideal result), the
following conditions must be met:

e Every single possible value of the select lines must lead to a block of the 1f-

or case-statement, and
e Every path through the statement must drive r1.

The following is an example of a valid combinational if-statement.

always comb begin
if (sel == 2'bo0)
rl = vall;
else

rl = val2;
end

This block would synthesize to the following multiplexer:

vall ——— 00

a1

out ri

val? —e—— 10

1"

select

el

Case-statements are similar; you can use them to compare one specific wire or reg
against multiple possible values. The syntax looks like this:

always_comb begin
case (sel)
2'b00: begin
rl = vall;
end
2'b01: begin
rl = val2;
end
default: begin
rl = val3;
end
endcase
end

Arrays

If you want to maintain multiple wires or buses that logically make more sense as
an array of independent ones, please don't just create a bunch of nets like valuel,

value2, value3, etc. Verilog also has arrays! The syntax to declare one is as
follows:

wire [7:0] w [0:3];

reg [3:0] r [0:2];

You can even declare inputs and outputs as arrays. Just be careful to not confuse
them with wires or regs of multiple bits! The following things are NOT equivalent:

reg [7:0] ri;
reg r2 [7:0];

ri
r2

8'b10101010;
8'b10101010;

Parameters

You may recall that C++ has macros, where you can #define things. Verilog
parameters are quite similar. In a module declaration, you can define a parameter:

module randomModule #(PARAMNAME=defaultValue) (ports go here);

And from the main module, you can set your parameter value during module
instantiation with

randomModule #(value) instanceName(ports go here);

Parameters allow us to create “customizable” modules without using FPGA blocks
and registers to modify their behavior.

The Sclog2 function

SystemVerilog provides us with a convenient function called Sclog2 () that takes in
a number as input and returns [1082(V)1, a k.a. the ceiling of the log base 2 of N. In
more practical terms, this function will return, for a given value of N, how many bits
you need to represent N values with a distinct number for each one. For example,
an FSM with 5 states requires at least [108:(5)] = 3 bits. It’s a very helpful function
for figuring out how many bits you need for a register or wire.

https://www.codecogs.com/eqnedit.php?latex=%20%5Clceil%20%5Clog_2(N)%20%5Crceil%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Clceil%20%5Clog_2(5)%20%5Crceil%20%3D%203%20#0

Frequently Asked Questions

Quartus and Questa

Q: Error deleting “msim_ transcript”
When trying to run Questa, I get an error that says error deleting
“msim_transcript”: permission denied. Whatever shall I do?

A: If you're getting this error, it means you have Questa open already and you're
trying to launch it again. Close Questa before you try reopening it from Quartus.

Q: Module missing from Questa
When I open Questa, I can’t find my testbench in the list of modules. Why
not?

A: If this is happening to you or a loved one, you may be entitled to financial
compensation!

Just kidding. This is usually because Questa has found some error with your
testbench or other module that the Quartus compiler didn't catch. In the little
window at the bottom labeled Transcript, you should be able to see a log from the
Questa compiler, which will feature a line that says “Errors: #, Warnings: #” (but
with actual numbers). If you scroll up above that, you should be able to see the
exact module and line number where some sort of error exists. Fix those errors,
re-run synthesis, and run Questa again - and you should be good to go!

Q: Making a QAR
How do I send my entire Quartus project to the leads for

debugging?

In your project, on the top bar, click on Project — Archive
Project. Use the screenshot on the right as reference.

Lab 1

Q: lllegal reference to net
The Questa compiler gives me an error saying I1legal reference to
net. Why, oh why, is this happening?

A: In Verilog, we have a few different keywords we can use to declare ports; wire,
reg, and logic are the main ones. Usually, this error indicates that you declared
something as a wire when it should have actually been a reg. This can even apply
to outputs! If the particular net or register causing problems is an output port, you
may need to declare it with output reg.

Read the section Wires, Regs, Logic, and Bit Width for more information. You'll
probably want to just use the logic keyword for all of your ports; this will simplify
everything a great deal, and you don't have to think about which keyword to use.

Lab 2

Q: Timer counts weirdly

When I synthesize my alarm clock onto the FPGA, the timer isn’t counting
second-by-second; instead, it’s jumping inconsistently, in weird
increments, or there’s other strange and unexplained behavior. Why is my
life such a tragedy?

A: Congratulations! You have likely just discovered your first timing violation. Our
guess is that your clock divider is driving the output clock combinationally instead
of sequentially.

We're not 100% sure, but we believe the issue is due to the nature of combinational
assignments and their effect on clocks. Unlike a sequential assignment to a register,
a combinational assignment can happen arbitrarily whenever the inputs change;
and even if we know that the inputs can only change on the clock edge, the
compiler doesn't know that because we're telling it that the output clock is
generated combinationally, so it probably synthesizes in hardware to something
that isn't “clock-like.” On the other hand, if you assign the output clock sequentially,
it is guaranteed that the slower output clock will still remain in sync (i.e. the
positive edges lining up) with the original input clock.

Therefore, the solution is simply to make your output clock a register that gets
assigned its values on the clock edge. You should still compute the clock value
combinationally, but the actual assignment of this computed value to the output
clock register should happen in an always @(posedge clk) block.

Q: Buzzer doesn’t buzz
When I test my clock divider, the buzzer isn’'t making any noise. What
could be the issue?

A: If your buzzer doesn’t buzz, try the following things:
1. Refer to the answer above regarding timing violations; this could be a source
of buzzer errors as well.

2.

Check your pin assignments. The input to your top-level module should be
the 50 MHz clock pin on the FPGA, identifiable on the Pin Sheet as
MAX10_CLK1_50 or MAX10_CLK1_50. The output should be a singular
GPIO pin, either in the GPIO rows at the top or the Arduino 10 header row
just below it. Check the datasheet for more details. (NOTE: This link
downloads a PDF of the datasheet to your computer.)

Ensure that your clock divider produces an output clock with a duty cycle of
50%. In other words, your output clock should be low for half of the counter
values and high for the other half.

. Verify that the output frequency you're generating is within the range of

human hearing, i.e. somewhere in between 20 Hz and 20000 Hz.

Q: Port is multiply driven
[keep getting an error telling me that a port is “multiply driven.” What
does this mean? Why does everything hurt?

A: If your port is multiply driven, it usually means that some part of your module is
attempting to give the same port multiple values at the same time. In hardware,
doing something like this would theoretically result in a short, which is why the
synthesis tool usually just does something unexpected in this case. There are a
number of different things you might have done to cause this error:

1.
2.
3.

Driving a port from both a combinational and sequential always block.
Driving a port using an always_comb block and an assign statement.
Driving a port from multiple assign statements or multiple always_comb
blocks.

Driving a port from multiple distinct sequential always blocks.

Basically, the only situation in which you're allowed to “multiply” drive something is
if you give a register an initial value and then thereafter drive it with only ONE

sequential always block.

https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=China&No=1021&FID=a13a2782811152b477e60203d34b1baa

SystemVerilog Example [IN PROGRESS]

Let’s take a look at a small project. The inputs are five switches; two correspond to
one operand, the next two correspond to a second operand, the fifth controls an
operation.

Compare the following two implementations:

A. Calculatorinator 1

calc_top.sv

module calc_top(
input sw,
input [2:0] operandl,
input [2:0] operand2,
output [3:0] answer

)s

calc CALCULATOR(.mode(sw), .opl(operandl), .op2(operand2),
.ans(answer));

endmodule

calc.sv

module calc(
input mode,
input [1:0] opl,
input [1:0] op2,
output [3:0] ans
)

assign ans = mode ? opl + op2 : opl - op2;

endmodule

We can convert our top-level module into a testbench as follows:

calc_top.sv
“timescale 1ns/1ns

module calc_top(
// input sw,
// input [2:0] operandl,
// input [2:0] operand2,
output [3:0] answer

)s

reg sw = 1'b0;
reg [2:0] operandl;
reg [2:0] operand2;

calc CALCULATOR(.mode(sw), .opl(operandl), .op2(operand2),
.ans(answer));

initial begin
for (int 1 = 2'b00; 1 < 2'b1ll; i = i + 2'bO1) begin
for (int j = 2'b00; j < 2'b1ll; j = j + 2'b0O1) begin
operandl = i;
operand2 = j;

sw = 1'b0;
#10;
sw = 1'bl;
#10;
end
end
$stop;
end
endmodule

In Questa, here is an example from waveforms:

B-“ /calc_top/operandl
B4 /calc_top/operand2

After a delay of 155 nanoseconds, the values of operand1, operand2 and sw are as
shown. Since sw is 1, we add the operands to get the value of 3 for answer.

B. Calculatorinator 2

We put the assignment to ans inside an always_comb block and declare the output
as reg.

calc.sv

module calc(
input mode,
input [1:0] opl,
input [1:0] op2,
output reg [3:0] ans

)
always _comb begin
ans = mode ? opl + op2 : opl - op2;
end
endmodule

The Questa output is:

0-“ /calc_top/operandl
n-“ /clc_topfoperand2

Cursor 1

The output is identical. So what's the difference between the implementations?

The assign statement requires that the left-hand-side be a wire; constantly
driven. So, in the first implementation we do away with always blocks and simply
use the assign statement to drive ans with the result of the operation. The logic
on the right-hand-side synthesizes to some combination of gates, multiplexers,
decoders — memory-less elements.

In the second implementation, the always_comb block executes only when any of
the input signals change. ans is updated accordingly, but in between signal changes
it needs to retain a value. That value needs to be based on the current values of the
input signals alone.

Suppose there was a case statement inside the always_comb block. If for every
branch within, ans is assigned a value, then the always_comb block will synthesize
to strictly combinational logic, which is what we want. Otherwise, if for some
branches ans is not assigned, then a latch is inferred; in the absence of a new value
to assign to ans, the old value is retained and memory is implied.

Long story short, reg (or 1logic) is used for always_comb blocks to create complex
combinational circuits. Though reg and logic both enable memory, the key point
is that by ensuring every possible input combination results in some value being
assigned to a reg variable, the reg variable depends only on the current values of
the inputs and thus behaves exactly as a combinational circuit should. It thus

synthesizes to a purely combinational circuit. We have basically used memory to
create a memory-less circuit.

	Verilog Docs
	Modules and I/O Ports
	Numbers
	X and Z
	Wires, Regs, Logic, and Bit Width
	Concatenation
	The assign statement
	The always block
	Assignment Operators
	Operations
	if-statements and case-statements
	Arrays
	Parameters
	The $clog2 function

	
	Frequently Asked Questions
	Quartus and Questa
	Q: Error deleting “msim_transcript”
	Q: Module missing from Questa
	Q: Making a QAR

	Lab 1
	Q: Illegal reference to net

	
	Lab 2
	Q: Timer counts weirdly
	Q: Buzzer doesn’t buzz
	Q: Port is multiply driven

	SystemVerilog Example [IN PROGRESS]

