
 BCNF Decomposition

Example: Decompose into BCNF - Restaurant(id, name, rating, popularity, rec)

1.​ id → name, rating

2.​ rating → popularity

3.​ popularity → rec

This example is covered in both the section slides and the lecture slides.

Given R(A, B, C, D, E), and functional dependencies: A → C, BD → A, D → E

1.​ Find the following closures: {A}+, {B}+, {D}+, and {BD}+

A
+
 = {A, C}

B
+
 = {B}

D
+
 = {D, E}

BD
+
 = {A, B, C, D, E}

2.​ Decompose R into BCNF. In each step, explain which functional dependency you used to

decompose and explain why further decomposition is needed. Your answer should

consist of a list of table names and attributes. Make sure you indicate the keys for each

relation.

There are multiple ways to break down {ABCDE} depending on what FD you do first.

R1{ABCDE}

D -> E

R2{D, E} R3{A, B, C, D}

A -> C

R2{D, E} R4{A, C} R5{A, B, D}

—---

R1{ABCDE}

A -> C

R2{A, C} R3{A, B, D, E}

D -> E

R2{A, C} R4{D, E} R5{A, B, D}

—--

R1{A, B, C, D, E}

BD -> ABCDE

This gives us back the original table. But because of our other FD’s, this is not in BCNF.

Use the other FDs to break this down further.

Relational Algebra

RA Operators:

σ = Select (WHERE/HAVING)​ π = Project (SELECT)

⨝ = Natural Join​ ​ ​ ɣ = Group/Aggregation

δ = Duplicate Elimination (DISTINCT)

Example: Make this SQL query into RA (remember FJWGHOS)

​ SELECT R.b, T.c, max(T.a) AS T_max

​ FROM Table_R AS R, Table_T AS T

​ WHERE R.b = T.b

​ GROUP BY R.b, T.c

​ HAVING max(T.a) > 99

Convert the following SQL queries into logical RA plans, given the following schemas:

Actor(aid, fname, lname, age)

ActsIn(aid, mid)

Movie(mid, name, budget, gross)

1.​ SELECT A.fname, A.lname, A.age
FROM Actor AS A
WHERE A.fname = “Patrick”

AND A.lname = “Stewart”;

​ ​

2.​ SELECT M.name, COUNT(*) AS cnt

FROM Actor AS A, ActsIn In AS AI, Movie AS M
WHERE A.aid = AI.aid AND M.mid = AI.mid
​ AND A.age < 30
GROUP BY M.mid, M.name
HAVING COUNT(*) > 1;

3.​ SELECT A.aid

FROM Actor AS A
WHERE NOT EXISTS (

SELECT *
FROM ActsIn AS AI, Movie AS M
WHERE AI.mid = M.mid AND AI.aid = A.id AND M.name = “Star Wars”

);

​ We will begin by rewriting this query to an equivalent query that will
be easier to make an RA plan for:

SELECT A.aid
FROM Actor AS A
WHERE A.aid NOT IN (

SELECT AI.aid
FROM ActsIn AS AI, Movie AS M
WHERE AI.mid = M.mid AND AI.aid = A.id AND M.name = “Star Wars”

);

1. RA to RA
Consider the fact that Amazon has shipped several billion packages over the course of its >20y
history and that it may surpass 10B packages by 2030. Assume that it tracks its packages and
users using the following schema:

Packages(PackageID, UserID, DestAddress, NumItems)

Users(UserID, CreditCardNumber, Languages)

Now, consider the following RA tree:

You may notice how, although the PACKAGES table is very very large (10B!!), an individual user
may have a very small number of rows. Generate a logically-equivalent tree which, ideally,
takes advantage of this fact.

First, use the WHERE-AND rewrite rule to split the conjunction into two sequential
operators.

Next, push the u.id selection down into both tables. We don’t actually have to push the
selection into USERS (since it’s the PACKAGES table which has such an advantageous
selection) but there’s also no harm in reducing the number of tuples we send to the
equijoin. Note how we were able to do this because the equijoin predicate used the
same attribute as the selection predicate; note also that we need to reference a
differently-named attribute in Users.

Lastly, we can optionally push the p.numItems selection down into PACKAGES table and
reconstruct the conjunction.

	 BCNF Decomposition
	1. RA to RA

