
AEP Versioning and Stability Proposal
Author: +yourname​yusuke.tsutsumi@gm.com
Contributors: Dan.Hudlow, Mike.Kistler, Marsh.Gardiner​Alex Stephen rfrankel@roblox.com
Created: 2025-05-27​
Updated: 2025-07-25

Summary
This document proposes the guarantees around versioning and stability for the https://aep.dev/
project.

Proposal
This document proposes the following:

AEPs will use an edition-based versioning scheme
AEPs will be published in editions, similar (but not identical) to specifications such as for the
C++ or Rust programming language:

●​ Changes to the specification will only be made when the next version is published.
●​ The naming of the version will be based on the year in which it is published (e.g.

aep-2025).
●​ Upon publishing the current edition, the next preview edition will be created (e.g.

aep-2027-preview). This preview edition will accumulate changes until it is published as
the next edition.

●​ AEP editions may have patch version updates which adhere to semantic versioning (e.g.
aep-2025.25). The patch version will only contain fixes to typos and clarification on
existing guidance.

●​ Editions will be published every 2 years.

Although not strictly related to versioning, the AEP project will generally strive to minimize
breaking changes, even across editions.

AEP first-party client and tool guidance
This proposal only applies to AEP first-party clients. Third party open source projects or
organizations are governed outside of this project, and may have their own guarantees.

mailto:yusuke.tsutsumi@gm.com
mailto:astephen2@gmail.com
mailto:rfrankel@roblox.com
https://aep.dev/

Clients will follow semantic versioning
Clients will adhere to Semantic Version 2.0.

The newest major version of clients and tools will be compatible with, at
minimum, the 3 latest AEP editions
The following guidance applies to the most recent major versions of clients:

●​ Clients may provide different support guarantees for older major versions.
●​ Each major version will state what AEP editions are supported by those clients.
●​ This guidance does not apply to accepting PRs on older major versions: those may be

accepted for any maintained branch of the project, at the discretion of the client
maintainers.

●​ Clients and tools may support features in preview editions, but support for preview
edition features in all clients and tools are not guaranteed.

Goals
In order to meet the needs of enterprises that wish to adopt AEPs, we must provide stability
guarantees and versioning. These help enterprises understand the rate of change, and
therefore level of effort for maintenance, to adhere to the specification, as well as how long they
can expect to leverage the ecosystem of the project when adopting a major version.

Because AEPs provide a discipline around designing and implementing interfaces, potentially
coordinated across many different teams, it is existential for the project to clearly define:

1.​ The constraints that discourage disruptive changes; and

2.​ The mechanisms to communicate those changes as the project evolves.

Design Details

Why an edition-based scheme?
The AEPs have two goals that are difficult to achieve in concert:

1.​ Providing a set of modern best practices for remote APIs.
2.​ Providing a stable ecosystem of tooling that organizations can adopt for their use.

This is due to the need to constantly evolve the best practices, which may contradict older best
practices and therefore result in a breaking change. These breaking changes can be difficult for
both services producing these APIs to adopt, as well as complicate clients with multiple different
code paths to handle these different versions of clients.

https://semver.org/

An edition-based system will help provide clear expectations around the cadence in which
breaking changes could be introduced, as well as act as an anchor on which other durations
could be based (for example, support for a number of editions in major versions of clients).

Why are clients versioned separately?
Although clients are expected to support recent AEP editions and could have a similar
versioning scheme, clients may also need to introduce breaking changes for a variety of
reasons unrelated to a new AEP edition, including:

1.​ An interface change in the client itself.
2.​ A change to support a new integration or interface (for example, supporting a new

version of the Terraform SDK, or a major version of the MCP server protocol).

This necessitates the ability to express these changes to consumers. As such, decoupling the
client version from the AEP editions is a critical requirement.

AEP Client Prioritization
The following does not serve as a guarantee, but outlines a loose prioritization that was used to
inform the versioning guarantees

1.​ Security updates (for all supported versions).
2.​ Support for new features in the specification.
3.​ If a client is not deprecated or EOL, it will support the current version of the spec.
4.​ Backporting features to older versions of the spec.

Examples of API specification changes
Although it has been decided that *all* changes to the specification (sans clarification or typos)
will be reserved until the next edition, the following table enumerates some examples of API
specification changes.

Change Description Would it have to wait until the next edition?

renaming a field (e.g. name to path) yes

change the syntax for a filter or query language yes

updating versioning guidance yes

adding a new standard method yes: someone could have been using PUT
(apply) before, and now they break the guidance.

adding a new field to an aep-owned proto/OAS
extension

no

Change Description Would it have to wait until the next edition?

removing guidance yes: although the specification can remove
guidance without breaking the adherence of the
API, a client may rely on that guidance, and a
change to remove guidance may cause a client
to break (in that it can no longer rely on that
guidance).

updating a design pattern (e.g. singletons or
revisions)

yes

Appendix

Scratch

User Journeys
●​ As an organization, we would like to adopt a specific AEP edition, and are worried about

how long we can expect the first-party ecosystem will support this AEP edition.

○​ They want the CLI, UI, MCP server, and Terraform Provider, and linter.

○​ What are they worried about?

■​ There is a security vulnerability in a client.

■​ An SDK / integration (e.g. MCP or Terraform) requires updates, and the
AEP first-party client for that edition does not provide that integrations

■​ There’s a shiny new thing I want to use, but the AEP first-party client for
that edition doesn’t support it

●​ As an organization, we would like to adopt AEPs, and are worried the whole project
won’t gain critical mass and the promise of the interface standardization and shared
tooling will fade away.

●​ As an organization, we would like to adopt a specific AEP edition, but we have to extend
it and fork the tools because it’s too naive to handle our whole problem space, and I’m
worried that it will be a ton of work to port my extensions to the tools that support the
next AEP edition.

●​ As an organization, we would like to adopt a specific AEP edition, and we are worried
that we and our customers will develop deep enough dependencies on the APIs
conforming to this edition, that we’ll never be able to update and will eventually be forced
to support deprecated versions of all the tooling ourselves.

 AEP Edition 2025 AEP Edition 2029

Client Version 2.x No Yes

Client Version 1.x Yes No

What are our priorities around the 1.x branch?

●​ security updates only for 4 years.

●​ we will still accept patches for older versions.

2025-06-13 with Richard and Mike
●​ the AEP edition will be supported for N years - let’s define that
●​ Richard: if we publish a new version of the client, our uses may not want / be able to

update their client.
○​ client support guarantees are also important.

●​ Mike:
○​ producer workflows will have to support all editions, to not break user workflows

to produce API.
○​ at MSFT: if an azure API goes GA, it’s supported indefinitely.
○​ 10 years security updates minimum for a major version of a client from the point

of publication.

○​ An AEP edition will be supported by the most recent major versions of tools for N
years.

●​ Rich:
○​ Three separate/orthogonal numbers:

■​ Security update support window (10 years, above)
■​ How far back do major client versions (e.g. aepc, aep-cli) go in terms of

supporting older editions of the spec? The most recent N specs (N
probably 1 or 2)?

■​ What’s the minimum time between AEP editions? (2 years, 4 years?)
●​ edition naming: 2025 -> 2029-preview -> 2029

	AEP Versioning and Stability Proposal
	Summary
	Proposal
	AEPs will use an edition-based versioning scheme
	AEP first-party client and tool guidance
	Clients will follow semantic versioning
	The newest major version of clients and tools will be compatible with, at minimum, the 3 latest AEP editions

	Goals
	Design Details
	Why an edition-based scheme?
	Why are clients versioned separately?
	AEP Client Prioritization
	Examples of API specification changes

	Appendix
	Scratch
	User Journeys

	2025-06-13 with Richard and Mike

