Storyboard Feature for Krita

Google Summer of Code Project
Synopsis

A storyboard is a graphic organizer that consists of illustrations and comments displayed in
sequence for the purpose of pre-visualizing and planning of motion picture and animation.
The storyboard docker would offer a GUI for creation and organization of storyboards. It
would manage multiple images and comments in a user-friendly manner and would save
users from managing multiple files. It would have multiple display modes to organize the
storyboard in a way suitable for the user. It will make Krita more of a stand-alone program
for animation.

Benefits to the community

Animators would not have to use external software for storyboarding. Team collaborations
among the Krita animator community would be easier due to better discussions and planning.
It would also enable amateur animators to prepare a draft idea easily. This will attract new
animators to Krita and help grow the animator community of Krita.

Deliverables— Project goals

The storyboard docker should be able to perform the following:
1. A Ul to show thumbnails for every non-empty frame of the image along with related
metadata for each frame. The frames can be reordered by drag and drop operation.
2. Frames would be added to the storyboard docker by default but can be removed from
the storyboard docker or the timeline docker.
. Change the mode of display (Row mode, Column mode, Grid mode).
. Edit images and metadata for a storyboard element from the storyboard docker.
. Export the storyboard in the desired format (PDF and SVG).
. User documentation will be written for the docker, how it interacts with other dockers
and the workflow while using it.

oUW

Implementation Details
UX Design

The docker is going to contain a list of images and associated comments. We will refer to an
image and associated comments as a storyboard item. Each Storyboard item consists of the
following:

Image/Thumbnail — A scaled version of the instance of image. Users would be able
to draw on it. It would update the canvas image.

Frame Number - The frame number corresponding to the frame in the timeline
docker.

Storyboard element name - A name given to the storyboard element which can be
edited by the user.

Text fields along with their names- Text field describing different attributes
related to that scene such as Dialogue, Action, comment etc.

Duration: A spin box to specify the time duration for that storyboard.

This would add a number of hold frames after that frame depending on the fps value.

Storyboard items could be moved around by drag and drop.
Users can choose how to arrange those elements. 3 different modes will be offered.
e Grid Mode — Storyboard items will be ordered in a grid or table .
e Row Mode — Storyboard items will be ordered in rows, images and comments next to
each other in one row and different storyboard items in different rows.
e Column Mode -Storyboard items will be ordered in columns, images and comments
below each other in one column and different storyboard items in different columns.

There will also be a Show option to decide the visibility of different items. This option will
have the following choices:

e Thumbnail only

e Comment only

e Both
These two options will together result in 9 possible ways of displaying the storyboard which
gives artists ample choices.

There would be a comments drop-down list consisting of different metadata fields for every
storyboard item. It can be used to toggle visibility of different metadata fields. It can be used
to add or delete metadata fields on a per-document basis.

There will be scrollbars(horizontal and vertical for different modes) to navigate the
storyboard. Storyboard items can be rearranged by drag and drop operations.

For exporting the storyboard in different formats there would be a drop-down button that
would list file formats available. PDF, SVG and PNG formats would be offered. Other
formats would be added on feedback. Clicking on any formats would open a layout
specification widget that would let users choose rows per page, columns per page and page
size. Option to specify layout using SVG file would also be offered.

Other changes to Ul will be made based on feedback from animators and developers.
Plugin

The storyboard docker will be part of Krita’s plugin system. A class called
StoryBoardDockerPlugin along with StoryboardDockerDockFactory will be created to tell the

system how to create the plugin. StoryboardDockerDock is another class that will be created
to define the GUI of the docker . It will be derived from either KoCanvasObserverBase or
KisMainWindowObserver so as to access the canvas and timeline docker. StoryboardView
would use the canvas and create a KisScratchPad like object that could be used to display and
edit the canvas.

1. StoryboardDockerDock - It sets up Ul, functions, signals, actions. Consists of
child widgets that manage signals. Passes arguments to child widgets created. It
would consist of all Ul widgets such as buttons, comboBox, layouts, labels and
StoryboardView to manage Storyboard elements. It will also handle creation and
updation of new Storyboardltem.

2. StoryboardDockerDockFactory — It creates a StoryboardDockerDock object and
sets its default area, position and id.

3. StoryboardDockerPlugin — Template of the docker plugin. It adds the
StoryboardDockerDockFactory object to an instance of KoDockRegistry.

MVC Design

The docker would need multiple views for underlying data. To implement this efficiently we
will use MVC Design. Qt offers classes to implement this architecture efficiently and it has
been used in other plugins before.

Classes to be created:

1. Storyboardltem - A single storyboard item consisting of
members corresponding to the parts described in Ul. This class is simply a
representation of the storyboard item’s data in raw form. It has no information about
orientation or modes.

2. StoryboardView — This is the view class. It will be derived from QTableView. It will
keep and update an array of Storyboardltem objects. It will accept user inputs and emit
signals to StoryboardDelegate to handle them. It will implement the Ul at the centre of
the storyboard docker. It will arrange StoryboardItems based on orientation, mode,
rows, columns. It will also handle mouse events for Storyboardltems. It will allow the
user to drag and drop Storyboardltems.

3. StoryboardDelegate — This is the delegate class. It will be derived from
QAbstractltemDelegate. It will implement the Ul for a single storyboard item. It will
also handle any editing and keep the Model and View in sync. It will take signals from
Storyboard View and modify information in StoryboardModel.

4. StoryboardModel — This is the model class. This class will store Storyboardltems. It
will hold them in the form of a list and this data will be used to construct the view. It
will also be changed by StoryboardDelegate when data is updated. It will load the data
at startup and update data at the time of saving.

For exporting the storyboard, layout would be designed based on user input. Users can design
layout using custom options such as rows per page, columns per page and page size or using an
SVG file.

PDF exporting

For exporting to pdf we can use QPrinter which allows “printing” to PDF files. To do so we
can set up a QPrinter instance like this

QPrinter printer(QPrinter::HighResolution);
printer.setOutputFormat(QPrinter::PdfFormat);
printer.setOutputFileName("path/to/file.pdf");

Since QPrinter inherits QPaintDevice, anything that supports outputting graphical content to
QpaintDevice can thus be used for generating PDFs. We can get a QPaintDevice from
KisPaintDevice since KisPaintDevice is derived from QpaintDevice.

We can also use Qt's Graphics View framework along with QPrinter as it is more suitable for
arbitrarily placed and transformed 2D graphical items.

To handle different numbers of rows and columns we can change the separation between
rows, columns and size of the elements. By adjusting these parameters we can easily fit any
number of storyboard elements on a page.

SVG Exporting

For exporting in SVG format we can use the QSvgGenerator class along with QPainter. It
would be similar to export to pdf. Once we have the paint device we can use it to create an
SVG file using QSvgGenerator class. If this approach does not work then I'll create SVG files
manually.

Integration

Saving and Loading Storyboard

The data in the Storyboard docker would consist of images and comments. The image would
be loaded using the frame number and accessing that frame from the KeyframeChannel of all
KisNodes. The comments and other metadata can be saved by adding a list of storyboard
structs to KisDocument. The kra_saver and kra_loader files would be changed to manage
proper loading and saving of data.

Interaction between timeline docker and storyboard docker

Any non-empty frame should be added to the storyboard docker. When a frame is selected in
one of the dockers it should be selected in the other docker as well. Any changes in the frame
should mirror in the storyboard docker and vice-versa. Deletion of frame from storyboard
docker should not mirror in timeline docker. Duration field in storyboard docker should add
hold frame after a frame. Swapping storyboard items should swap the frames in the timeline
docker. Clicking on a frame in either docker should highlight the same in the other docker if it
exists.

Testing

Tests will be written in the Qt Test Framework for the following :
1. Interaction between delegate and model class.
2. Interaction between timeline docker and storyboard docker.
3. Saving and loading storyboard metadata when opening or closing Krita.
4. Export as a pdf functionality.
5. Export as svg functionality.

Documentation

Documentation for the new Storyboard Docker and related workflow will be written with
feedback from the animator community.

Mockups

Makes the storyboard

Storyboa I’d DOCkeI’ canvas editable
Lists options to export in different Export . Comments|V E:J) Mode A pop up menu
formats. Opens a widget to A o CRolumn to specify mode and
specify layout.User can /" To sThof] [2 s[J101] [3 s[J10¢] 2 G‘;i"c‘j’ visibility of different
specify layout using the custom fields.
options or using an SVG file. View
@ All
A ts d d O Thumbnail Only
comments drop down O Comments Only
menu lists added metadata i | | (B2 || [i
fields
Comments [V Action Action Action
———Ation W Action text can word wrap. Action text can word wrap. [Action text can word wrap.
Delete button Dialogue] Edited by double clicking.- Edited by double clicking.. ‘ Edited by double clicking.-
To add a new field [tew i JE8 Dialogue Dialogue Dialogue The image field that displays
enter name of D;‘a\ogue t:x[, can w?(rd wrap. Dialogue text, can word wrap. E;a:ogubsylsx[,b(‘anlw?(rdgwrap a scaled version of frame imageA
Edited by double clicking. ite jouble clicking. ite jouble clickin ;
. . i i Fdted b doutle lcing It can be edited from here as well
field and click +.
as canvas.
[3 5[0 [3 s[10] [3 s10]

D&D operations can be used

to move storyboard items Adds a new storyboard

,// item after.
Duration would be in / 28] @ EH @I @‘

seconds + frame. It would [~ Deletes this storyboard item.

be similar to minute/second .
If number of frames entered

is larger than fps it would be
moved to second. Both fields
would be int

Action Action Action))
Action text can word wrap. ‘ ‘Action text can word wrap. ‘ Action text can word wrap. Metadata field that can be edited

i - ~ Edited by double clicking.- . .
Fdited by double clicking Edited by double clicking red by coble clene Vv by double clicking. Text can word
wrap.

Export widget and layout specification options

| Export _l\\/l |C0mments |V| Eo
FaS

A widget to specify layout for
T Exporting. User can specify

\ using the custom options or using SVG file.

Export

|051

~

B Rows per page: 3 L

Columns per page: 4
Page size : A3 ~
[2 s[10 1] A2

Specify layout using SVG file |
5 =

[3 s[]1o]

Opens a file explorer
widget to specify the svg file.

Row Mode + Thumbnail view Column mode + Both view

Mode

O Column
@ Row
O Grid

View
O All
@® Thumbnail Only
O Comments Only

Export lVl |Cumments |V|

=

|Export |Vl |Cumments|vl Eo
A~
lo s[101]
[2 s[10]
=2
[3 s[l1o+
v

Row mode + Both view

lo s[io¢

[2 s[104]

[3 s[1o+]

=2

i

Action

Action

Action text can word wrap.
Edited by double clicking.-

Action text can word wrap.
Edited by double clicking.-

Dialogue

Dialogue

Dialogue text, can word wrap.
Edited by double clicking.

Dialogue text, can word wrap.
Edited by double clicking.

Action

Action text can word wrap
Edited by double clicking.-

Dialogue

Dialegue text, can word wrap.
Edited by double clicking.

N\

N\

Scroll bar converted to horizontal for
column mode.

Grid view + Both view

Export |V| | Comments |V|

Export IV| |Comments |V| :=O
Action Dialogue Pal
|0 S DlO f‘ Action text Dialogue
can word text.
wrap.
E2 |}
Action Dialogue
|2 s DIO f| Action text Dialogue
can word text.
wrap.
H
Action Dialogue
3 sl10f Action text | |Dialogue
can word text.
wrap.
[==]
Action Dialogue
\ o310 f|:|1 v

3=

[0 s[]io+

12 s[]1o1]

[3 s107]

B il

E]

Action

Action

Action text can word wrap.
Edited by double clicking.-

Action text can word wrap.
Edited by double clicking.-

Dialogue

Dialogue

Dialogue text, can word wrap.
Edited by double clicking

Dialogue text, can word wrap.
Edited by double clicking.

Action

Action text can word wrap.
Edited by double clicking.-

Dialogue

Dialogue text, can word wrap.
Edited by double clicking

O
N

13 s[Jio 4[]

[3 s[iof

[3 s[1of

5= Tu

E= [}

Action

Action

Action text can word wrap.
Edited by double clicking.-

Action text can word wrap.
Edited by double clicking.-

Action

Action text can word wrap.
Edited by double clicking.-

Custom layout design for Export function

Number of rows = r

Number of columns = ¢

width of page = w

height of page = h

width of storyboard element = sbw

height of storyboard element = sbh

minimum separation between storyboard element = 10mm

Max dim storyboard element that can fit (aw X ah)=
{[h - (r+1)*10]/r } x {[w - (c+1)*10]/c }

Scaling factor(sf) = min (aw/sw , ah/sh)

final dimension of storyboard (fw X fh) =
(sbw * sf) X (sbh * sf)

final offset between rows (fro)= {h - (r* fh)}/(r+1)
final offset between columns (fco) = {w - (c * fw)}/ (c+1) h

shw

sbh

’ fw

Timeline
Community Bonding Period (May 4 - May31)

+—Blogprogress-andplan:

e Add details in the docs for introduction to storyboard docker, different modes and their
uses.

v v, TAY

e Get the basic GUI and modes tested by users on KA and reddit. Ask for feedback on docs.

Week 5 (June 29 - July 5)
£ Lt - 29— July-3)
e Write unit tests for interaction between delegate class and model class.
e Write unit tests for interaction between timeline docker and storyboard docker.
e Write documentation for how the storyboard interacts with the timeline docker.

o—Blogprogress-and-plan:
Week 8 (July 20 - 26)
e Get the views, modes and interaction with the timeline docker tested by users on
krita-artists or reddit. Make changes based on the feedback.
+—Blogprogressandplan:
Week 9 (July 27 - August 2)
e Second evaluation period(July 27 - 31)
e Write unit tests for saving, loading and export functionality.
e Decide how to save and load data when starting and closing krita. Implement the changes
in model class, KisDocument class, kra_saver and kra_loader.
e Blog progress and plan.
Week 10 (August 3 - 9)
e Design and implement GUI for export dialog.
e Implement layout specification using SVG file. Implement the custom layout specification.
e Arrange multiple storyboard items according to the layout specified by the user as one
paint device.
e Blog progress and plan.
Week 11 (August 10 - 16)
e Implement the export as PDF/PNG functionality.
e Implement the export as SVG functionality.
e Write documentation for export function and options.
e Get the export functionality tested by users, especially layout design. Make changes based
on feedback.
e Blog progress and plan.
Week 12 (August 17 - 23)
e Compile all the documentation parts together and finalize it.
e Buffer week for any unforeseen events.
e Blog progress and plan.
Week 13 (August 24 - 31)
e Final evaluation and wrap up
e Blog progress and plan.

Note:
e Semester exams might get postponed into summers (May-June) due to COVID-19 but that
would not pose any problem for completion of the project.

Biography

Saurabh Kumar

Email: saurabhk660@amail.com
IRC nick: confifu

Phone: +91 7355995290

Prior contributions:

mailto:saurabhk660@gmail.com

https://invent.kde.org/kde/krita/-/merge_requests/202

https://invent.kde.org/kde/krita/-/merge_requests/207
https://invent.kde.org/kde/krita/-/merge_requests/209

https://invent.kde.org/kde/krita/-/merge_requests/222

https://invent.kde.org/kde/krita/-/merge_requests/233
https://invent.kde.org/kde/krita/-/merge_requests/247

| am currently a 2™ Year undergraduate Computer Science student in Delhi Technological
University, New Delhi, India. | have been using Krita for a year now. | like the simplicity and
minimalism of digital art. | started using Krita while looking for open source digital art
softwares and have never stopped since.

| started contributing to Krita in the winter vacations(Dec-Jan) this year. | have since fixed 4
bugs and implemented two features. The first feature adds functionality to split a layer into
local selection masks and the second allows users to add an image as file-layer from the
command-line . | am very enthusiastic about Krita, both as a user and as a developer since it
is my first interaction with the open source community and digital art.

The storyboard feature is a large project compared to my other contributions and | am still
familiarizing myself with Krita. But | am confident that | can complete the promised part.
Therefore | hope to utilize the opportunity of GSoC to get help from mentors so that | can
have a better understanding of the codebase and accomplish this task.

After GSoC I'll continue to contribute to Krita. | like the community of artists and developers
around Krita. | will be in contact with mentors through the IRC channel, Gitlab and
Phabricator etc. | will also submit detailed weekly reviews through a weekly blog.

| am not submitting proposals to other organizations. | don’t plan on working on anything
this summer other than GSoC.

https://invent.kde.org/kde/krita/-/merge_requests/202
https://invent.kde.org/kde/krita/-/merge_requests/207
https://invent.kde.org/kde/krita/-/merge_requests/209
https://invent.kde.org/kde/krita/-/merge_requests/222
https://invent.kde.org/kde/krita/-/merge_requests/233
https://invent.kde.org/kde/krita/-/merge_requests/247

Alternate Timeline for the last 4 weeks

Week 9 (July 27 - August 2)

Second evaluation period(July 27 - 31)

Write unit tests for saving, loading and export functionality.

Write documentation about Interactions with the docker(general introduction). Also write
about modes and views and the other buttons in the docker and in the storyboard item.
Blog progress and plan.

Week 10 (August 3 - 9)

Decide how to save and load data when starting and closing krita. Implement the changes
in model class, KisDocument class, kra_saver and kra_loader.

Design and implement GUI for export dialog.

Write documentation about interaction between timeline docker and storyboard docker.
Blog progress and plan.

Week 11 (August 10 - 16)

Implement layout specification using SVG file. Implement the custom layout specification.
Arrange multiple storyboard items according to the layout specified by the user as one
paint device.

Implement the export as SVG functionality.

Write documentation for export function and options.

Get the export functionality tested by users, especially layout design. Make changes based
on feedback.

Blog progress and plan.

Week 12 (August 17 - 23)

Implement the export as PDF/PNG functionality.

Write documentation for code.

Compile all the documentation parts together and finalize it.
Blog progress and plan.

Week 13 (August 24 - 31)

Final evaluation and wrap up
Blog progress and plan.

