
2 : Polynomials

- 1. If (x + a) is a factor of $2x^2 + 2ax + 5x + 10$, find a. [2008] ...[1M]
- 2. If 1 is a zero of the polynomial $p(x) = ax^2 3$ (a-1)x - 1, then find the value of a.[2009]...[1M]
- 3. If α , β are the zeroes of a polynomial, such that $\alpha + \beta = 6$ and $\alpha\beta = 4$, then write the polynomial. [2010] ...[1M]
- If one zero of a quadratic polynomial (kx² + 3x + k) is 2, then the value of k is [2020] ...[1M]
 - (a) $\frac{5}{6}$
- (b) $-\frac{5}{6}$
- (c) $\frac{6}{5}$
- (d) $-\frac{6}{5}$
- The graph of a polynomial is shown in Fig. 2, then the number of its zeroes is [2020] ...[1M]

- (a) 3
- (b) 1
- (c) 2
- (d) 4
- If one of the zeroes of the quadratic polynomial x² + 3x + k is 2, then the value of k is

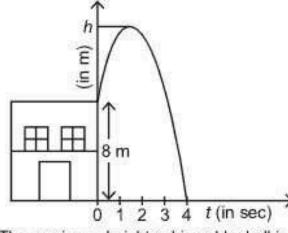
[2020] ...[1M]

- (a) 10
- (b) -10
- (c) -7
- (d) -2
- The quadratic polynomial, the sum of whose zeroes is –5 and their product is 6, is

[2020] ...[1M]

- (a) $x^2 + 5x + 6$
- (b) $x^2 5x + 6$
- (c) $x^2 5x 6$
- (d) $-x^2 + 5x + 6$

 A quadratic polynomial having sum and product of its zeroes as 5 and 0 respectively, is


[2021] ...[1M]

- (a) $x^2 + 5x$
- (b) 2x(x-5)
- (c) $5x^2 1$
- (d) $x^2 5x + 5$
- Zeroes of a quadratic polynomial x² 5x + 6 are
 [2021] ...[1M]
 - (a) -5, 1
- (b) 5, 1
- (c) 2, 3
- (d) -2, -3
- The zeroes of quadratic polynomial x² + 99x + 127 are [2021] ...[1M]
 - (a) Both negative
 - (b) Both positive
 - (c) One positive and one negative
 - (d) Reciprocal of each other

Case Study Based Questions (Q.11 to Q.15): Sukriti throws a ball upwards, from a rooftop which is 8 m high from ground level. The ball reaches to some maximum height and then returns and hit the ground.

If height of the ball at time t(in sec) is represented by h(m), then equation of its path is given as $h = -t^2 + 2t + 8$

Based on above information, answer the following:

11. The maximum height achieved by ball is

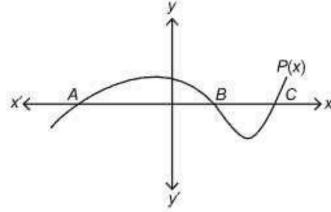
[2021] ...[1M]

- (a) 7 m
- (b) 8 m
- (c) 9 m
- (d) 10 m
- The polynomial represented by above graph is

[2021] ...[1M]

- (a) Linear polynomial
- (b) Quadratic polynomial
- (c) Constant polynomial
- (d) Cubic polynomial

Corporate Office: Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.011-47623456


13. Time taken by ball to reach maximum height is

[2021] ...[1M]

- (a) 2 sec.
- (b) 4 sec.
- (c) 1 sec.
- (d) 2 min.
- Number of zeroes of the polynomial whose graph is given, is [2021] ...[1M]
 - (a) 1
- (b) 2
- (c) 0
- (d) 3
- Zeroes of the polynomial are
- [2021] ...[1M]

- (a) 4
- (b) -2.4
- (c) 2, 4
- (d) 0, 4
- The graph of a polynomial P(x) cuts the x-axis at 3 points and touches it at 2 other points. The number of zeroes of P(x) is [2021] ...[1M]
 - (a) 1
- (b) 2
- (c) 3
- (d) 5
- 17. In figure, the graph of a polynomial P(x) is shown. The number of zeroes of P(x) is

[2021] ...[1M]

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- A quadratic polynomial, the product and sum of whose zeroes are 5 and 8 respectively is

[2021] ...[1M]

- (a) $k[x^2 8x + 5]$ (b) $k[x^2 + 8x + 5]$
- (c) $k[x^2 5x + 8]$ (d) $k[x^2 + 5x + 8]$
- 19. If x 1 is a factor of the polynomial $p(x) = x^3 +$ $ax^2 + 2b$ and a + b = 4, then [2021] ...[1M]
 - (a) a = 5, b = -1
 - (b) a = 9, b = -5
 - (c) a = 7, b = -3
 - (d) a = 3, b = 1

If α , β are the zeroes of the quadratic polynomial $p(x) = x^2 - (k + 6)x + 2(2k - 1)$, then the value

of
$$k$$
, if $\alpha + \beta = \frac{1}{2}\alpha\beta$, is

[2021] ...[1M]

- (a) -7
- (b) 7
- (c) -3
- (d) 3
- 21. If $p(x) = x^2 + 5x + 6$, then p(-2) is [2023] ...[1M]
 - (a) 20
- (b) 0
- (c) -8
- (d) 8
- A quadratic polynomial whose sum and product of zeroes are 2 and -1 respectively is

[2023] ...[1M]

- (a) $x^2 + 2x + 1$
- (b) $x^2 2x 1$
- (c) $x^2 + 2x 1$
- (d) $x^2 2x + 1$
- 23. If α , β are zeroes of the polynomial $x^2 1$, then the value of $(\alpha + \beta)$ is [2023] ...[1M]
 - (a) 2
- (b) 1
- (c) -1
- (d) 0
- 24. If α , β are the zeroes of the polynomial $p(x) = 4x^2 - 3x - 7$, then $\left(\frac{1}{\alpha} + \frac{1}{\beta}\right)$ is equal to: [2023] ...[1M]

- 25. If one zero of the polynomial $p(x) = 6x^2 + 37x -$ (k - 2) is reciprocal of the other, then find the value of k. [2023] ...[2M]
- 26. Find the value of k such that the polynomial $x^{2} - (k + 6)x + 2(2k - 1)$ has sum of its zeros equal to half of their product. [2019] ...[3M]
- 27. If α and β are the zeroes of the polynomial $f(x) = x^2 - 4x - 5$, then find the value of $\alpha^2 + \beta^2$.

[2020] ...[3M]

- Find a quadratic polynomial whose zeroes are reciprocals of the zeroes of the polynomial $f(x) = ax^2 + bx + c$, $a \neq 0$, $c \neq 0$. [2020] ...[3M]
- If α, β are zeroes of the quadratic polynomial x² 5x + 6, form another quadratic polynomial

whose zeroes are $\frac{1}{\alpha}, \frac{1}{\beta}$ [2023] ...[3M]