

Gas Laws: Complete Study Guide

Foundational Concepts

- Properties of Gases:
 - **Pressure (P)**: Force gas exerts per unit area (measured in atm, mmHg, torr, kPa)
 - Volume (V): Space a gas occupies (usually in liters, L)
 - Temperature (T): Always in Kelvin for gas laws $K=^{C}+273\text{text}\{K\} = \text{text}\{^{C}\} + 273K=^{C}+273$
 - Amount of gas (n): In moles moles=mass (g)molar mass\text{moles} = \frac{\text{mass (g)}}{\text{molar}} mass}}moles=molar massmass (g)

The Major Gas Laws

- 1. Boyle's Law Pressure vs. Volume
 - Formula: P1V1=P2V2P_1 V_1 = P_2 V_2P1V1=P2V2
 - Constant: Temperature, number of moles
 - Relationship: Inverse
 - When volume ↓, pressure ↑
 - Use when: Temp is constant, P & V change

2. Charles's Law — Volume vs. Temperature

- Formula: V1T1=V2T2\frac{V_1}{T_1} = \frac{V_2}{T_2}T1V1=T2V2
- Constant: Pressure, number of moles
- Temperature in Kelvin
- Relationship: Direct
 - Temp ↑ ⇒ Volume ↑
- **Use when**: Pressure is constant, V & T change

3. Gay-Lussac's Law — Pressure vs. Temperature

- **Formula**: P1T1=P2T2\frac{P_1}{T_1} = \frac{P_2}{T_2}T1P1=T2P2
- Constant: Volume, number of moles
- Relationship: Direct
 - Temp ↑ ⇒ Pressure ↑
- Use when: Volume is constant, P & T change

4. Combined Gas Law

• Formula:

 $P1V1T1 = P2V2T2 \cdot \{P_1 \ V_1\} \{T_1\} = \cdot \{P_2 \ V_2\} \{T_2\} T1P1V1 = T2P2V2$

- Use when: P, V, and T all change
- Must use Kelvin and consistent units

5. Ideal Gas Law

Formula:

PV=nRTPV = nRTPV=nRT

- R (Gas constant): 0.0821 L·atm/mol·K
- Use when:
 - Given or solving for moles, pressure, temp, volume
 - Can also be rearranged:
 - P=nRTVP = \frac{nRT}{V}P=VnRT
 - V=nRTPV = \frac{nRT}{P}V=PnRT
 - n=PVRTn = \frac{PV}{RT}n=RTPV

6. Avogadro's Law — Moles vs. Volume

- Formula:
 - $V1n1=V2n2\\frac{V_1}{n_1} = \\frac{V_2}{n_2}n1V1=n2V2$
- Relationship: Direct
 - More moles = more volume (at same T & P)

a Conversions You'll Need

Quantity	Convert to	How
Temperatur e	Kelvin	°C + 273
Pressure	atm	1 atm = 760 mmHg = 101.3 kPa
Volume	Liters (L)	1000 mL = 1 L
Moles	from grams	mass / molar mass

How to Know Which Law to Use

Problem Mentions... Use This Law

Boyle's Law

Pressure & Volume change, temp

constant

Volume & Temp change, pressure Charles's Law

constant

Pressure & Temp change, volume Gay-Lussac's Law

constant

P, V, and T all changing Combined Gas Law

Involves moles or gas amount Ideal Gas Law

Problem-Solving Strategy

1. Identify what's changing: P, V, T, or n?

- 2. Convert all units:
 - \circ Temp \rightarrow Kelvin
 - \circ Volume \rightarrow Liters
 - Mass → **Moles** (if needed)
- 3. Choose correct gas law.
- 4. Plug values into formula.
- 5. Solve for unknown.
- 6. **Check units & logic** (volume shouldn't be negative, etc.)

Example Problem

Q: A gas occupies 3.50 L at 1.00 atm and 300 K. What volume will it occupy at 2.00 atm and 400 K?

A: Use the Combined Gas Law

Practice Topics to Master:

- Interpreting graphs of pressure vs. volume (inverse)
- Recognizing when to use **Kelvin**
- Identifying whether relationships are direct or inverse
- Using molar mass to convert grams to moles
- Recognizing when a gas law question is a **real-world scenario** (e.g., balloons rising)