
Java

Specification: Introduce lazy
Configuration factory method APIs

Abstract
Introduce new factory methods on ConfigurationContainer allowing users to create
role-locked Configurations, where roles are specified upon construction.

Spike

Prior Work
Specification: Configuration Roles Changes in Gradle 8.3
Configuration Purposes Can Be Declared and Tracked

Background
The Configuration type is a pervasive, all-powerful type that currently supports three
separate mutually exclusive use-cases:

● Resolution: Configurations can act as the root of a dependency graph and can initiate
resolutions of dependency graphs. These graphs can be leveraged to resolve artifact
sets.

● Consumption: Configurations can act as a variant in the context of Dependency
Management and Publishing – advertising dependencies and artifacts to outside
consumers.

● Dependency Declaration: Configurations can act as a named source of dependencies,
dependency constraints, and exclude rules, for use with resolvable and consumable
configurations.

The Configuration type already, to an extent, defines some separation in regards to these
use cases by defining methods that allow setting and querying whether a given
Configuration supports one or more of these given roles:

interface Configuration {
void setCanBeConsumed(boolean allowed);
boolean isCanBeConsumed();

https://github.com/gradle/gradle/pull/25193
https://docs.google.com/document/d/126GBpFi2tDnEd4urlXCJOvUlfOK3M8o8zXjQwkGzwXU/edit#heading=h.8cpx7cw8oiiq
https://docs.google.com/document/u/0/d/1a2vtM10FiWdTpnY8b2S-q28Cl0xUEVIzAOl3BpOeyng/edit


Java

void setCanBeResolved(boolean allowed);
boolean isCanBeResolved();
void setCanBeDeclared(boolean allowed);
boolean isCanBeDeclared();

}

Implementing this mutable-style behavior is difficult, since at any time a Configuration may
need to add entire new behaviors to the set which it currently supports. Furthermore,
Configurations upon construction support all three of these roles, while in most cases only
needs to support a single role. Currently, a user would use the following code in order to create
a “specialized” configuration which supports only a single role

configurations {
myDependencies {

canBeConsumed = false
canBeResolved = false

}
myResolvable {

canBeConsumed = false
canBeDeclared = false
extendsFrom(myDependencies)

}
myConsumable {

canBeResolved = false
canBeDeclared = false
extendsFrom(myDependencies)

}
}

Why
● Since the current API only supports creating a Configuration which supports all three

roles, new Configurations need to be initialized in a state which can support all three
roles. This means extra memory in terms of state and services need to be retained in



any given Configuration implementation upon creation – even if these behaviors will
be turned off immediately after construction

● Even if a given usage is turned off immediately, the Configuration API will still
present methods related to that turned-off configuration. For example, apiElements is
a Configuration, which extends FileCollection, even though all methods on that
Configuration which relate to resolution will throw exceptions when called.

● The mutability of roles make it difficult to configure all Configurations of a single role,
particularly resolvable Configurations. Consider a use-case where a user wants to
affect all resolutions in a single project, for example by adding a request attribute for use
with artifact transforms or by configuring the resolution strategy for all configurations.
Currently, any configurations.all callbacks will be executed before the configure
block of a given Configuration, meaning that callback will be executed against the
configuration before its roles are configured. This necessitates using an
afterEvaluate in order to have a configurations.all properly determine the
type of a Configuration. We officially recommend this pattern in our minifiy sample.

● The mutability of roles can further bring about confusing situations when a role for a
given Configuration is disabled after the Configuration has been configured for a
behavior of that role. Consider a case where the user configures the
ResolutionStrategy for a Configuration, and then disables the resolvable usage
for that configuration. What does that mean conceptually? It should not be possible for
this situation to arise.

○ KMP does this and has stopped us from shipping features.

Given all of these reasons, the primary goal that this spec is trying to achieve is to allow users to
specify Configuration roles upon creation.

● This avoids “multi-role” configurations, such as those which are resolvable and can be
consumed

● This ensures a Configuration which intended to be one type cannot be changed to
another

● This resolves the configurations.all requiring afterEvaluate issue.

Given the proposed change, we will be able to work towards the following future goals:
● Reduced Configuration memory footprint

○ If we know which role a Configuration is intended to perform, we can avoid
allocating unnecessary state.

● Improved API
○ Future work will introduce new APIs which only expose the methods relevant to a

given Configuration role. For example, a Resolvable will not have methods
to add artifacts, a Consumable will not have methods to resolve it to a set of
files, and a DependencyScope will not have resolution or consumption specific
methods.

https://github.com/gradle/gradle/blob/52ba39889e8b96fe14facc4abe860f2a8221fa42/subprojects/docs/src/snippets/dependencyManagement/artifactTransforms-minify/kotlin/build.gradle.kts#L96-L102
https://github.com/JetBrains/kotlin/blob/0f4cca68777b98e996e37354ffb8fec8d474cb46/libraries/tools/kotlin-gradle-plugin/src/common/kotlin/org/jetbrains/kotlin/gradle/targets/jvm/KotlinJvmTarget.kt#L147-L152
https://github.com/gradle/gradle/issues/23477


Functional design
We propose adding a series of new public and internal methods to
ConfigurationContainer which lazily create Configurations in specific roles. The
Configurations created by the public methods will be locked, meaning their roles will not be
able to be changed after construction. The internal methods will create unlocked
Configurations, which may have their roles changed. In 9.0 we will migrate from the internal
unlocked to public locked methods for first-party Gradle plugins.

Public factory methods
For each of the three configuration types, we will create two overloads with names
resolvable, consumable, and dependencyScope, respectively. Each set of overloads will
have a version that accepts a String, and another that accepts a String and an Action
configure closure. We explicitly chose not to expose maybeCreate versions of these factory
methods.

interface ConfigurationContainer {

NamedDomainObjectProvider<ResolvableConfiguration> resolvable(String name);

NamedDomainObjectProvider<ResolvableConfiguration> resolvable(String name, Action<? super ResolvableConfiguration> action);

NamedDomainObjectProvider<ConsumableConfiguration> consumable(String name);

NamedDomainObjectProvider<ConsumableConfiguration> consumable(String name, Action<? super ConsumableConfiguration> action);

NamedDomainObjectProvider<DependenciesConfiguration> dependencyScope(String name);

NamedDomainObjectProvider<DependenciesConfiguration> dependencyScope(String name, Action<? super DependenciesConfiguration> action);

}

Choosing a proper name for dependencyScope Configurations has been difficult. Please
see the Naming section below for details on the options we considered. Please add a reaction
to the name which you think is best, or propose others if you think there are good names which
we may have missed.

Internal factory methods
In order to avoid breaking changes, we cannot immediately update our first-party
Configurations to have locked roles. Therefore, we introduce internal methods to
temporarily create unlocked Configurations. The Configurations created by the
unlocked methods will emit deprecation warnings when their roles are changed, so by 9.0 we
will be able to migrate first-party Gradle Configurations to use the public API methods.
These methods will have similar overloads compared to the public API, but will have the
Unlocked suffix on their method names.

https://github.com/gradle/gradle/blob/c52d03abd28fdb99fe1905cbbac9b52ac068d074/subprojects/core-api/src/main/java/org/gradle/api/artifacts/ConfigurationContainer.java#L131-L223
https://github.com/gradle/gradle/blob/c52d03abd28fdb99fe1905cbbac9b52ac068d074/subprojects/core/src/main/java/org/gradle/api/internal/artifacts/configurations/RoleBasedConfigurationContainerInternal.java


In addition to the three types of Configurations that can be created with the public API, we
also include two additional types in the internal API: migrating, and
resolvableDependencyScope.

● migrating factory methods accept an additional ConfigurationRole parameter,
which must be defined in the known set of ConfigurationRolesForMigration, and
define Configurations which have an arbitrary role now in 8.x but will migrate to a
well-known role in 9.0. For example a Legacy (consumable, resolvable, dependencies)
configuration migrating to a Resolvable.

● Resolvable + Dependency Scope Configurations are used throughout our first-party
plugins. We are still deciding how and if these types of Configurations can be
created by users. If we decide to expose this functionality to users, we will likely change
the existing create, maybeCreate, and register methods to create these types of
configurations. Defining public factory methods to create these types of
Configurations is out-of-scope for this document. Users who need this functionality
can use the existing Legacy Configuration creating methods.

Finally, we introduce maybeRegister overloads for each configuration factory type. These are
to be used internally and will emit deprecation warnings if the user creates a Gradle-managed
configuration. By 9.0 we will be able to migrate away from the maybe factory methods.

interface RoleBasedConfigurationContainerInternal {

NamedDomainObjectProvider<ConsumableConfiguration> consumableUnlocked(String name);

NamedDomainObjectProvider<ConsumableConfiguration> consumableUnlocked(String name, Action<? super ConsumableConfiguration> action);

NamedDomainObjectProvider<ResolvableConfiguration> resolvableUnlocked(String name);

NamedDomainObjectProvider<ResolvableConfiguration> resolvableUnlocked(String name, Action<? super ResolvableConfiguration> action);

NamedDomainObjectProvider<DependenciesConfiguration> dependencyScopeUnlocked(String name);

NamedDomainObjectProvider<DependenciesConfiguration> dependencyScopeUnlocked(String name, Action<? super DependenciesConfiguration> action);

NamedDomainObjectProvider<Configuration> migratingUnlocked(String name, ConfigurationRole role);

NamedDomainObjectProvider<Configuration> migratingUnlocked(String name, ConfigurationRole role, Action<? super Configuration> action);

NamedDomainObjectProvider<Configuration> resolvableDependencyScopeUnlocked(String name);

NamedDomainObjectProvider<Configuration> resolvableDependencyScopeUnlocked(String name, Action<? super Configuration> action);

NamedDomainObjectProvider<? extends Configuration> maybeRegisterResolvableUnlocked(String name, Action<? super Configuration> action);

NamedDomainObjectProvider<? extends Configuration> maybeRegisterConsumableUnlocked(String name, Action<? super Configuration> action);

NamedDomainObjectProvider<? extends Configuration> maybeRegisterDependencyScopeUnlocked(String name, Action<? super Configuration> action);

NamedDomainObjectProvider<? extends Configuration> maybeRegisterDependencyScopeUnlocked(String name, boolean warnOnDuplicate, Action<? super Configuration> action);

NamedDomainObjectProvider<? extends Configuration> maybeRegisterMigratingUnlocked(String name, ConfigurationRole role, Action<? super Configuration> action);

NamedDomainObjectProvider<? extends Configuration> maybeRegisterResolvableDependencyScopeUnlocked(String name, Action<? super Configuration> action);

}



Java

New configuration sub-interfaces
The public locked factory methods will return sub-types of Configuration corresponding to
the three types of Configurations noted above:

● ResolvableConfiguration
● ConsumableConfiguration
● DependencyScopeConfiguration

With these new sub-interfaces, users will be able to more easily configure Configurations of a
specific type in a declarative manner:

configurations {
withType(ResolvableConfiguration).configureEach {

resolutionStrategy {
// ...

}
}

}

Currently, these interfaces will be marker-only and have no methods, however future work will
additional methods to expose these configurations through a new API. This API will have types
which expose only role-specific functionality. For example, a Resolvable will be able to
produce a FileCollection, ArtifactCollection, ArtifactViews, and any other
behavior which a resolvable configuration is expected to do. The same goes for new
Consumable and DependencyScope types.

In order to expose these new types, we will add a corresponding toX method on each
Configuration subtype. For example, a ResolvableConfiguration would have a
toResolvable method on it, ConsumableConfiguration will have a toConsumable
method, and a DependencyScopeConfiguration will have a toDependencyScope
method. These methods provide a bridge between the existing Configuration API and any
new types which we introduce as part of a migration away from the Configuration type.

While there is no concrete timeline for the introduction of the new Resolvable, Consumable,
and DependencyScope types, we are actively working towards a design in this area. Stay
tuned for future updates here.



Unset

Implementing the new interfaces
To implement these new interfaces, we create 3 new concrete sub-classes of Configuration,
each of which extends DefaultConfiguration, and implement any associated
Configuration sub-interfaces. The new implementations include:

● DefaultResolvableConfiguration
● DefaultConsumableConfiguration
● DefaultDependencyScopeConfiguration

Each of these implementations will be locked, meaning they cannot change roles. This gives us
the freedom to iteratively override methods on a per-role basis – for example throwing
exceptions when a method is called on a Configuration with the incorrect role. For example,
getFiles() on a DefaultConsumableConfiguration could throw an exception outright
as opposed to first verifying its role like DefaultConfiguration does now. This greatly
simplifies the implementation of Configuration by allowing us to avoid tracking the current
role.

The existing Configuration factories
The Groovy DSL allows creating “legacy” configurations through the existing means. For
example:

// Groovy
configurations {

conf { }
}

// Kotlin
configurations {

"conf" { }
}

val anotherConf by configurations.creating

// Java
Configuration conf = configurations.create("name")

To implement these existing factory schemes, we further define a
DefaultUnlockedConfiguration, which is the type used for all unlocked configurations.
Since the roles of these configurations can change, it would not be correct for it to implement
any of the new proposed Configuration sub-interfaces . Instead, as configurations migrate



Java

over to the factory methods and have locked roles, they will begin to be able to expose the new
configuration subtypes.

In addition, DefaultConfiguration will be made abstract. Assuming we do not run into
any blockers with third-party plugins using internal APIs, we will then rename
DefaultConfiguration to AbstractConfiguration.

Future Work
For the time being, the “legacy” factories will not change in behavior. The linked spike does not
implement the below features. The will continue to make unlocked Configurations which
default to the “legacy” state of having all 3 roles. These existing factory schemes are in use
heavily within buildscripts and we want to avoid large changes to source for now. Due to the
heavy use of these methods, we will want any deprecation strategy to be as seamless as
possible.

We will likely start by deprecating these types of configurations for consumption. The
consumable factory method will act as a replacement. This leaves the resolvable and
dependency spec roles still enabled, solving the use-case of convenient in-buildscript
downloading of arbitrary files from Maven repositories.

Next, we will deprecate these configurations from changing roles. This provides us with similar
advantages that the new proposed factory methods provide.

However, these is no timeline for these changes. The greatest blocker for moving forwards here
is that these APIs are heavily used in third-party plugins like Android and Kotlin, and we want to
be sure they are not using deprecated behavior before continuing. We will likely need to support
other popular plugins as part of this migration in order to ensure the change is as seamless as
possible.

Outcome
After these changes, the code-block in Background section would now appear like so:

configurations {
dependencyScope("myDependencies")
resolvable("myResolvable") {

extendsFrom(myDependencies)
}
consumable("myConsumable") {



extendsFrom(myDependencies)
}

}

Questions/problems
● How should we handle Configurations which are currently Resolvable + Dependency

Scope Configurations in the public API? It is a very common use-case for a user to
add dependencies to a configuration just to resolve it immediately – often to fetch some
arbitrary file from a Maven repository for further processing in an arbitrary task.

○ We use these types of configurations often. classpath,
annotationProcessor, antlr, pmd, checkstyle, codenarc,
jacocoAgent, jacocoAnt, cppCompile, nativeLink, swiftCompile,
swiftLink, providedCompile, providedRuntime,
scalaCompilerPlugins, zinc, and soon to be earlib and deploy.

○ Detached configurations will become a Resolvable + Dependencies configuration
in 9.0

● Should the NamedDomainObjectProviders returned by factory methods have ?
extends for their generic type? For example, for a ResolvableConfiguration,
which should we return:

○ NamedDomainObjectProvider<ResolvableConfiguration>
○ NamedDomainObjectProvider<? extends ResolvableConfiguration>

Naming
Configurations used for declaring dependencies, dependency constraints, and exclude rules
have gone by several names in the past, however none has significantly stuck. Furthermore, the
Gradle documentation does not refer to these types of configurations with a consistent name.
Below are the options we considered for this type of configuration.

● Bucket
○ This term is highly overloaded. See this, this, and this for examples of other

buckets.
○ Bucket does not in any way describe what this type of configuration does, other

than collecting stuff.
● Dependencies

https://www.bucket-outlet.com/pics/Small-Tin-Bucket.png
https://www.bfgcdn.com/1500_1500_90/204-4630-1511/patagonia-wavefarer-bucket-hat-hat.jpg
https://5jrorwxhrkokiij.ldycdn.com/cloud/ijBqkKorRiiSjkikriil/excavator-bucket.png


○ This now at least has “dependency” in the name, but is a bit too general. The
factory method within the configurations block (dependencies) would look very
similar to the top-level dependencies block on the Project

● Dependency Spec
○ This is better, though its name makes it seem like it is a Spec which applies to a

single dependency
● Dependencies Spec

○ Solves the above problem, but the double S is a tongue-twister / unwieldy to
pronounce

● Dependency Scope
○ Uses familiar terminology borrowed from Maven
○ The “scope” term matches the type it is describing – the “Dependency scope

configuration” represents the scope or extent as to where those dependencies
will be used

○ Can potentially be confused with other overloads of scopes, for example variable
scoping, though given this is explicitly prefixed with Dependency and since this
term is already heavily used in the ecosystem with Maven, this is not much of an
issue.

● DependencyDeclarations

Security implications
N/A

Considered Alternatives
● Introduce separate containers which expose new interfaces

○ Configuration is a highly-used type so we need a stepping-stone to the new
interfaces in the interim.

○ We should not add new global containers to the Project
● Factory methods return new interfaces altogether instead of interfaces that extend

Configuration
○ We want users to be able to easily adopt these new factory methods, since the

primary goal initially is to migrate users to Configurations which do not
change roles.

○ The new interfaces are not finalized or even designed yet. Waiting for this would
push back our goals of normalizing locked-role configurations

● Factory methods return Configuration and not subtypes of Configuration
○ This would mean adding toResolvable etc to the Configuration type itself.

This would be a bad API since for example, a non-resolvable API would need to
throw an exception for this method.



● Internally segment the Configuration type into separate implementations and use a
sort of state-machine implementation to delegate to each underlying implementation
based on the current role

○ This does not solve the problem of a Configuration itself exposing APIs for
separate usages. Even if we could separate the implementations for each usage,
we would still expose the mixed-usage APIs which is confusing from a
user-experience standpoint.

● Do nothing
○ This is similar to the first bullet.
○ Since the Configuration API is so widely used, our initial goals should be to

introduce an API that users can easily migrate to while also allowing users to
leverage future upcoming interfaces in a type-safe manner

Won’t Do
● Deprecate all configurations from changing roles

○ We want to do this, but it is likely we cannot migrate the entire ecosystem over to
role-locked configurations by Gradle 9. Legacy configurations created with
create, maybeCreate, and register will still be allowed to change roles. We
will likely deprecate creating legacy configurations in 9.1

● Introduce new Resolvable, Consumable, and DependencySpec interfaces
○ This will be done in future proposals

● Split up and simplify DefaultConfiguration
○ Until Configurations are limited from changing roles completely, we must

always have an implementation of Configuration which supports all three
usages.

○ If we updated create, maybeCreate, and register to only create a
Resolvable + Dependencies configuration, we could potentially after 9.0 remove
the Consumable functionality out of DefaultConfiguration.

● Implement specific methods in Configuration sub-implementations (for example
hard-code false for isCanBeConsumed or hard-code throwing an exception for
resolvable methods in DefaultConsumableConfiguration)

○ A proper implementation of DefaultConsumableConfiguration would be
able to override non-consumable methods, for example getIncoming to throw
an exception immediately.

○ This proposal does open the door for doing this, which we plan to do in future
work.


