
Mariusz Zaborski: Case studies of sandboxing base system
with Capsicum
Outline

●​ capsicum
●​ is capsicumizing hard?
●​ debugging infra
●​ casper
●​ future

Capsicum
●​ echo: can read write all data
●​ capability model
●​ kernel inra

○​ tight sandboxing
○​ cap_enter()

Capsicum vs namespaces
●​ PIDs
●​ file paths
●​ NFS handles
●​ fs ids
●​ sysctl mib
●​ sysv ipc
●​ posix ipc
●​ clocks
●​ jails
●​ CPU sets
●​ protocol addrs
●​ routing tables

Capsicum
●​ int cap_enter(void);
●​ int cap_rights_limit(int fd, const cap_rights_t *rights);
●​ caps as file descriptors

rights
●​ CAP_READ, WRITE, APPEND, ACCEPT, FCHMOD, CREATE, UNLINKAT< IOCTL, RECV, LISTEN

Capsicum
●​ two ways to obtain more caps

○​ initialization phase
○​ delegation

●​ Privileged -> Resources
○​ -> Sandboxed (send resource by fd passing)

Is capsicumizing hard?
●​ Not for new code. Existing code?

2015 sandboxing effort
●​ dhclient, ...

2016 sandboxing effort
●​ much more

bspatch(1)
●​ SA-16:25: negative value
●​ SA-16:29: integer overflows

bspatch(1) - Step 0: read the code
●​ (... C code …)

Step 1: code reorg
●​ every single open is done during initialization phase, i.e. move open before cap_enter()

Step 2: read more code
●​ code attempts to read from fds, seeking on fds

Step 3: limit operations on fds
●​ CAP_READ, CAP_SEEK

cmp(1) - deduplicate code
●​ read file, determine if same or not

capsicum helpers
●​ capsicum_helpers.h
●​ inline functions

○​ caph_limit_stream(), limit_stdout(), limit_stdin(), limit_stderr()
libc is not your friend

●​ err(3)
●​ localtime(3)
●​ syslog
●​ modify vdso to not open device
●​ more helpers

○​ caph_cache_catpages(): NLS support
○​ caph_cache_tzdata()

debugging infrastructure
●​ ktrace/kdump

○​ getting only trace
●​ very easy to miss something
●​ hard to cover all paths

debugging - krace
●​ (example output)

debugging - enotcap
●​ kern.trap_enotcap
●​ procctl(PROC_TRAPCAP_CTL)
●​ get core dump
●​ hard to miss something
●​ hard to cover all code paths

debugging - enotcap
●​ (example enotcap SIGTRAP)

libCasper
●​ 2nd way to get more caps: delegation

Casper
●​ provides functionality not avail in cap mode through convenient APIs
●​ easier process separation
●​ done before entering Capability mode
●​ Creating zygote
●​ set of dynamic libs

Casper: how?
●​ process (cap_init()) -> casper -> zygote
●​ casper -> service (cap_service_open())
●​ cap_close(): leave only process->service

Casper
●​ system.dns
●​ system.grp

●​ system.pwd: password files
●​ system.random
●​ system.sysctl

Traceroute - capsicumize with casper
(.. C code …)

casper - mocks
●​ reduce amount of ifdefs in code
●​ hide ifdefs in lib itself
●​ use inline/defines to create mocks
●​ e.g.

○​ cap_gethostbyname ifdef’ed to gethostbyname in header if not using casper
Future!
Casper - next next generation

●​ integration with libc?
○​ make libc more pluggable, e.g. multiple gethostbyname functions (scott: nss?)
○​ start casper in _start

●​ sandbox services
○​ services run with user privileges
○​ reduce TCB

Casper services
●​ system.filesystem
●​ system.syslog
●​ system.login
●​ system.tls
●​ system.socket
●​ system.configuration

Casper - dhclient(8)
(SIGTRAP core dump example)
dhclient started before syslog in initscripts

Casper - system.syslog
●​ change the order? (not viable)
●​ casper service D12824
●​ fixed dhclient D12825

casper - sshd(8)
​ (sshd core dump example)

●​ login_getpwclass() was failing
●​ opens $HOME/login.conf and /etc/login.conf
●​ patch specific to FreeBSD

Acknowledgements
Q&A

●​ per thread caps? A: caps represented by descriptors, so no
●​ much more fine grained than OpenBSD pledge? A: yes
●​ Is this a bit like Android permissions? A: no, fd represent a much more precise thing. More granular.

	Mariusz Zaborski: Case studies of sandboxing base system with Capsicum

