Mariusz Zaborski: Case studies of sandboxing base system
with Capsicum

Outline
e capsicum
e is capsicumizing hard?
debugging infra
e casper
o future
Capsicum
e echo: can read write all data
e capability model
e kernelinra
o tight sandboxing
o cap_enter()
Capsicum vs namespaces
PIDs
file paths
NFS handles
fs ids
sysctl mib
sysv ipc
posix ipc
clocks
jails
CPU sets
protocol addrs
e routing tables
Capsicum
e int cap_enter(void);
e int cap_rights_limit(int fd, const cap_rights_t *rights);
e caps as file descriptors
rights
e CAP_READ, WRITE, APPEND, ACCEPT, FCHMOD, CREATE, UNLINKAT< IOCTL, RECV, LISTEN
Capsicum
e two ways to obtain more caps
o initialization phase
o delegation
e Privileged -> Resources
o -> Sandboxed (send resource by fd passing)
Is capsicumizing hard?
e Not for new code. Existing code?
2015 sandboxing effort
e dhclient, ...
2016 sandboxing effort
e much more
bspatch(1)
e SA-16:25: negative value
e SA-16:29: integer overflows

bspatch(1) - Step 0: read the code
e (..Ccode...)
Step 1: code reorg
e every single open is done during initialization phase, i.e. move open before cap_enter()
Step 2: read more code
e code attempts to read from fds, seeking on fds
Step 3: limit operations on fds
e CAP_READ, CAP_SEEK
cmp(1) - deduplicate code
e read file, determine if same or not
capsicum helpers
e capsicum_helpers.h
e inline functions
o caph_limit_stream(), limit_stdout(), limit_stdin(), limit_stderr()
libc is not your friend
err(3)
localtime(3)
syslog
modify vdso to not open device
more helpers
o caph_cache_catpages(): NLS support
o caph_cache_tzdata()
debugging infrastructure
e ktrace/kdump
o getting only trace
e very easy to miss something
e hard to cover all paths
debugging - krace
e (example output)
debugging - enotcap
kern.trap_enotcap
procctl(PROC_TRAPCAP_CTL)
e get core dump
e hard to miss something
e hard to cover all code paths
debugging - enotcap
e (example enotcap SIGTRAP)
libCasper
e 2nd way to get more caps: delegation
Casper
e provides functionality not avail in cap mode through convenient APIs
e easier process separation
e done before entering Capability mode
Creating zygote
e set of dynamic libs
Casper: how?
e process (cap_init()) -> casper -> zygote
e casper -> service (cap_service_open())
e cap_close(): leave only process->service
Casper
e system.dns
e system.grp

e system.pwd: password files
e system.random
e system.sysctl
Traceroute - capsicumize with casper
(.. Ccode ...)
casper - mocks
e reduce amount of ifdefs in code
e hide ifdefs in lib itself
e use inline/defines to create mocks
e eg.
o cap_gethostbyname ifdef'ed to gethostbyname in header if not using casper
Future!
Casper - next next generation
e integration with libc?
o make libc more pluggable, e.g. multiple gethostbyname functions (scott: nss?)
o start casper in _start
e sandbox services
o services run with user privileges
o reduce TCB
Casper services
e system.filesystem
system.syslog
system.login
system.tls
system.socket
e system.configuration
Casper - dhclient(8)
(SIGTRAP core dump example)
dhclient started before syslog in initscripts
Casper - system.syslog
e change the order? (not viable)
e casper service D12824
e fixed dhclient D12825
casper - sshd(8)
(sshd core dump example)
e login_getpwclass() was failing
e opens $HOME/login.conf and /etc/login.conf
e patch specific to FreeBSD
Acknowledgements
Q&A
e per thread caps? A: caps represented by descriptors, so no
e much more fine grained than OpenBSD pledge? A: yes
e s this a bit like Android permissions? A: no, fd represent a much more precise thing. More granular.

	Mariusz Zaborski: Case studies of sandboxing base system with Capsicum

