CSE 332: Data Structures and Parallelism

Section 9: Parallel Prefix

0. Parallel Prefix Sum

Given inputarray [8, 9, 6, 3, 2, 5, 7, 41],outputan array such that each

output[i] = sum(array[0], array[l], ..., arrayl[i]).

Use the Parallel Prefix Sum algorithm from lecture. Show the intermediate steps. Draw
the input and output arrays, and for each step, show the tree of the recursive task
objects that would be created (where a node’s child is for two problems of half the size)
and the fields each node needs. Do not use a sequential cut-off.

First pass: fill out the sum field starting from leaf nodes to the top by starting with each leaf node’s value as its
sum, then combining parallel subproblems by taking the sum of each side. This can be calculated with the
following expressions:

leaves[i].sum = input]i]

p.sum = p.left.sum + p.right.sum

Range: 0, 2
Sum: 17
FL:

Range: 2, 4
Sum: 9
FL:

Range: 4, 6
Sum:7
FL:

Range: 6, 8
Sum: 11
FL:

Range: 0,1 Range: 1, 2 f Range: 2,3 f Range: 3, 4 Range: 4,5 Range: 5, 6 Range: 6,7 Range:7, 8
Sum: 8 Sum: 9 Sum: 6 Sum: 3 Sum: 2 Sum: 5 Sum 7 Sum 4
FL: FL: L FL: L FL: FL: FL:

Input 8 9 6 3 2 5 7

Output

https://homes.cs.washington.edu/~djg/teachingMaterials/spac/sophomoricParallelismAndConcurrency.pdf#page=36

Second pass: fill out the FL (“from left”) field starting from the top down to the leaf nodes to represent the sum
of the prefix of this subproblem’s range, that is, the sum of everything to the /eft of this node. This can
calculated with the following expressions:

p.right.FL = p.FL + p.left.sum

p.left.FL = p.FL
Then fill the output array with the sum and FL fields at the leaf node level:

output[i] = leavesJi].FL + input[i]

Range: 4, 8
Sum: 18
FL:26

Range: 2, 4
Sum: 9
FL:17

Range: 4, 6
Sum:7
FL: 26

Range: 6, 8
Sum: N
FL: 33

Range: 0, 1 Range: 1, 2 Ronge 2,3 Ronge: 3,4 Range: 4, 5 Range: 5, 6 Range: 6,7 Range: 7, 8
Sum: 8 Sum: 9 Sum: 6 Sum: 3 Sum: 2 Sum: 5 Sum:7 Sum: 4
FL:0 FL:8 FL 17 FL: 23 FL: 26 FL: 28 FL: 33 FL: 40

Input 9 3 5 7

Output 8 17 23 26 28 33 40 44

1. Parallel Prefix FindMin

Given inputarray [8, 9, 6, 3, 2, 5, 7, 41],outputan array such that each
output[i] = min(array[0], arrayl[l], ..., arrayl[i]). Show all steps, as
above.

First pass: fill out the min field starting from leaf nodes to the top by starting with each leaf node’s value as its
min, then combining parallel subproblems by taking the min of each side. This can be calculated with the
following expressions:

leaves(i].min = input]i]

p.min = min(p.left.min, p.right.min)

Range: 0, 8
Min: 2
FL:

Range: 4, 8
Min: 2
FL:

Range: 0, 4
Min: 3
FL:

Range: 4, 6
Min: 2
FL:

Range: 2, 4
Min: 3
FL:

Range: 0, 2
Min: 8
FL:

Range: 0, 1 Range:1, 2 (Range: 2,3 (Range: 3, 4 Range: 4, 5 Range: 5, 6 Range: 6,7 Range:7, 8
Min: 8 Min: 9 Min: 6 Min: 3 Min: 2 Min: § Mln 7 M|n 4
FL: FL: FL: . FL FL: FL:

Input 8 9 6 3 2 5 4

Output

Second pass: fill out the FL (“from left”) field starting from the top down to the leaf nodes to represent the
minimum value of the prefix of this subproblem’s range, that is, the min of everything to the /eft of this node.
This can calculated with the following expressions:

p.right.FL = min(p.FL, p.left.min)

p.left.FL = p.FL
Then fill the output array with the min and FL fields at the leaf node level:

output[i] = min(leaves[i].FL, input[i])

Range: 0, 8
Min: 2
FL: 0

Range: 0, 2 Range: 2, 4 Range: 4, 6 Range: 6, 8
Min: 8 Min: 3 Min: 2 Min: 4
FL:0 FL:8 FL:3 FL: 2

[Range: 0,1] [Range: 1, 2 J (Range: 2, 3 J (Range: 3, 4 J [Range: 4, 5 } [Range: §, 6 } [Range: 6, 7 J [Range: 7, 8
Min: 8 Min: 9 Min: 6 Min: 3 Min: 2 Min: 5 Min: 7 Min: 4
FL: 0 FL:8 L FL:8 L FL: 6 FL:3 FL:2 FL:2 FL:2
Input 8 6 3 2 4
Output 8 8 6 3 2 2 2 2
2. Parallel Pack
Given inputarray [12, 5, -8, 34, 6, 10, 2, 71, outputan array that contains

only the elements that are less than 10.

Use the Parallel Pack algorithm from lecture. Show the intermediate steps. Draw the
input and output arrays, and for each step, show the tree of the recursive task objects
that would be created (where a node’s child is for two problems of half the size) and the
fields each node needs. Do not use a sequential cut-off.

https://courses.cs.washington.edu/courses/cse332/23wi/lectures/cse332-23wi-lec16-PrefixAndSorting.pdf#page=16

Step 1: parallel map to compute bits array such that bits[i] = 1 if input[i] < 10

Input 12) -8 34 6 10 2 7

Bits 0 1 1 0 1 0 1 1

Step 2: parallel prefix sum to on bits array
- First pass: fill out the sum field starting from leaf nodes to the top by starting with each leaf node’s value
as its sum, then combining parallel subproblems by taking the sum of each side. This can be calculated
with the following expressions:
- leaves[i].sum = bits][i]
- p.sum = p.left.sum + p.right.sum

Range: 0, 4
Sum: 2
FL:

Range: 6, 8
Sum: 2
FL:

Range: 0,1 Range: 1, 2 (Range: 2, 3 (Range: 3, 4 Range: 4, 5§ Range: 5, 6 Range: 6,7 Range: 7, 8
Sum: 0 Sum: 1 Sum: 1 Sum: 0 Sum: 1 Sum: 0 Sum: 1 Sum: 1
FL: FL: FL: L FL: FL: FL: FL: FL:

Bits 0 1 1 0 1 0 1 1

Bitsum

- Second pass: fill out the FL (“from left”) field starting from the top down to the leaf nodes to represent
the sum of the prefix of this subproblem’s range, that is, the sum of everything to the /eft of this node.
This can calculated with the following expressions:

- p.right.FL = p.FL + p.left.sum

- p.left.FL = p.FL

- Then fill bitsum array with the sum and FL fields at the leaf node level:
- bitsumli] = leaves]i].FL + bits]i]

Range: 0, 4
Sum: 2
FL:O

Range: 4, 8
Sum: 3
FL: 2

Range: 6, 8
Sum: 2
FL: 3

Range: 0, 1 Range: 1, 2 (Range: 2, 3 (Range: 3, 4 Range: 4, 5§ Range: §, 6 Range: 6,7 Range: 7,8
Sum: 0 Sum: 1 Sum:1 Sum: 0 Sum:1 Sum: 0 Sum: 1 Sum: 1
FL:0 FL:0 L FL:1 L FL:2 FL:2 FL:3 FL:3 FL: 4
Bits 0 1 1 0 1 0 1 1
Bitsum 0 1 2 2 3 3 4 5

Step 3: parallel map to produce output array
- Create output array of size bitsum[n-1] where n is the size of input array.
- Fill out output array: if bits[i] == 1, then add input[i] to output array at index bitsum[i] - 1

lo: 0
hi: 8

Input 12 5 -8 34 6 10 2 7
Bits 0 1 1 0 1 0 1 1
Bitsum 0 1 2 2 3 3 4 5

Output 5 -8 6 2 7

3. Work it Out [the Span]

a) Define work and span.

Work - how long the running time of a program would be with just one
processor
Span - the running time with an infinite number of processors

b) How do we calculate work and span?

Work - sum all the work done by each processor
Span - calculate the longest dependence chain (the longest ‘branch’ in the
parallel 'tree’)

c) Does adding more processors affect the work or span?

Neither - both work and span are defined by a fixed number of processors (1
for work and infinity for
span) so adding more processors won’t affect them

d) What is the total work and span of this task graph?
Totalwork=1+2+2+2+4+1+1=13
Span=1+2+4=7

>

a

@O
el

4. User Profile

You are designing a new social-networking site to take over the world. To handle all the
volume you expect, you want to support multiple threads with a fine-grained locking
strategy in which each user's profile is protected with a different lock. At the core of your
system is this simple class definition:

1 class UserProfile {

2 static int id_counter;

3 int id; // unique for each account

4 int[] friends = new int[9999]; // horrible style
5 int numFriends;

6 Image[] embarrassingPhotos = new Image[9999];

7
8

UserProfile() { // constructor for new profiles

9 id = id_counter++;

10 numFriends = 0;

11 }

12

13 synchronized void makeFriends(UserProfile newFriend) {

14 synchronized(newFriend) {

15 if(numFriends == friends.length

16 || newFriend.numFriends == newFriend.friends.length)
17 throw new TooManyFriendsException();

18 friends[numFriends++] = newFriend.id;

19 newFriend.friends[newFriend.numFriends++] = id;
20 }

21 }

22

23 synchronized void removeFriend(UserProfile frenemy) {

24

25 }

26 }

a) The constructor has a concurrency error. What is it and how would you fix it? A
short English answer is enough - no code or details required.

There is a data race on id counter. Two accounts could get the same id if

they are created simultaneously by different threads. Or even stranger things
could happen. You could synchronize on a lock for id counter.

b) The makeFriends method has a concurrency error. What is it and how would
you fix it? A short English answer is enough no code or details required.

There is a potential deadlock if there are two objects obj1 and ob-2 and one
thread calls obj1.makeFriends (obj2) when another thread calls

obj2.makeFriends (objl). The fix is to acquire locks in a consistent order
based on the id fields, which are unique.

5. Bubble Tea

The BubbleTea class manages a bubble tea order assembled by multiple workers.
Multiple threads could be accessing the same BubbleTea object. Assume the Stack

objects are thread-safe, have enough space, and operations on them will not throw an
exception.

1 public class BubbleTea {

2 private Stack<String> drink = new Stack<String>();
3 private Stack<String> toppings = new Stack<String>();
4 private final int maxDrinkAmount = 8;

5

6 // Checks if drink has capacity

7 public boolean hasCapacity() {

8 return drink.size() < maxDrinkAmount;

9 }

10

11 // Adds liquid to drink

12 public void addLiquid(String liquid) {

13 if (hasCapacity()) {

14 if (liquid.equals("Milk")) {

15 while (hasCapacity()) {

16 drink.push("Milk");

17 }

18 } else {

19 drink.push(liquid);

20 }

21 }

22 }

23

24 // Adds newTop to list of toppings to add to drink
25 public void addTopping(String newTop) {

26 if (newTop.equals("Boba") || newTop.equals("Tapioca")) {
27 toppings.push("Bubbles");

28 } else {

29 toppings.push(newTop);

30 }

31 }

a) Does the BubbleTea class above have (circle all that apply):

a race condition potential for a data race none of these
deadlock

If there are any problems, give an example of when those problems could occur.
Be specific!

a race condition

Assuming Stack is thread-safe, a race condition still exists. If two threads
attempt to call addLiquid () at the same time, they could potentially both
pass the hasCapacity () test with a value of 7 for drink.size (). Then
both threads would be free to attempt to push onto the drink stack, exceeding
maxDrinkAmount. Although this is not a data race, since a thread-safe stack
can’t be modified from two threads at the same time, it is definitely a bad
interleaving (because exceeding maxDrinkAmount violates the expected
behavior of the class).

b) Suppose we made the addTopping method synchronized, and changed nothing
else in the code. Does this modified BubbleTea class above have (circle all that
apply):

a race condition potential for a data race none of these
deadlock
If there are any FIXED problems, describe why they are FIXED. If there are any
NEW problems, give an example of when those problems could occur. Be
specific!

a race condition

Assuming Stack is thread-safe, a race condition still exists as described

above. This change does reduce the effective concurrency in the code,
however, so it actually makes things slightly worse.

6. Phone Monitor

The PhoneMonitor class tries to help manage how much you use your cell phone
each day. Multiple threads can access the same PhoneMonitor object. Remember
that synchronized gives you reentrancy.

1 public class PhoneMonitor {

2 private int numMinutes = 0;

3 private int numAccesses = 0;

4 private int maxMinutes = 200;

5 private int maxAccesses = 10;

6 private boolean phoneOn = true;

7 private Object accessesLock = new Object();
8 private Object minutesLock = new Object();
9

10 public void accessPhone(int minutes) {

11 if (phoneOn) {

12 synchronized (accesseslLock) {

13 synchronized (minutesLock) {
14 numAccesses++;

15 numMinutes += minutes;

16 checkLimits();

17 }

18 }

19 }

20 }

21

22 private void checkLimits() {

23 synchronized (minutesLock) {

24 synchronized (accesseslLock) {

25 if (numAccesses >= maxAccesses
26 || numMinutes >= maxMinutes) {
27 phoneOn = false;

28 }

29 }

30 }

31 }

32 }

a) Does the PhoneMonitor class as shown above have (circle all that apply):

a race condition potential for a data race none of these
deadlock

If there are any problems, give an example of when those problems could occur.
Be specific!

a race condition, a data race

There is a data race on phoneOn. Thread 1 (not needing to hold any locks)
could be at line 11 reading phoneOn, while Thread 2 is at line 27 (holding both
of the locks) writing phoneOn. A data race is by definition a type of race
condition.

b) Suppose we made the checkLimits method public, and changed nothing else
in the code. Does this modified PhoneMonitor class have (circle all that apply):

a race condition potential for a data race none of these
deadlock

If there are any FIXED problems, describe why they are FIXED. If there are any
NEW problems, give an example of when those problems could occur. Be
specific!

a race condition, potential for deadlock, a data race

The same data race still exists, and thus so does the race condition. By making
checkLimits method public, it is possible for Thread 1 to call accessPhone
and be at line 13 holding the accessesLock lock and trying to get the
minutesLock lock. Thread 2 could now call checkLimits and be at line 24,
holding the minutesLock lock and trying to get the accessesLock lock.
Therefore, now there is also potential for deadlock.

	0. Parallel Prefix Sum
	
	1. Parallel Prefix FindMin
	2. Parallel Pack
	3. Work it Out [the Span]
	4. User Profile
	
	5. Bubble Tea
	6. Phone Monitor

