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Abstract

The ability to steer Al behavior is crucial to preventing its long term dangerous and catastrophic
potential. Representation Engineering (RepE) has emerged as a novel, powerful method to
steer internal model behaviors, such as "honesty”, at a top-down level. Understanding the
steering of representations should thus be placed at the forefront of alignment initiatives.
Unfortunately, current efforts to understand plasticity at this level are highly neglected. This
paper aims to bridge the knowledge gap and understand how LLM representation stability,
specifically for the concept of “honesty”, and model plasticity evolve by applying steering vectors
extracted at different fine-tuning stages, revealing differing magnitudes of shifts in model
behavior. The findings are pivotal, showing that while early steering exhibits high plasticity, later
stages have a surprisingly responsive critical window. This pattern is observed across different
model architectures, signaling that there is a general pattern of model plasticity that can be used
for effective intervention. These insights greatly contribute to the prevention of catastrophic risk,
addressing a pressing lack of efficiency limiting our ability to effectively steer model behavior.
Full code | developed for the project can be found at
https://github.com/UltraTsar/NonTrivialRepE Timeline/tree/main.

1. Problem Overview & ITN Framework

1.1. Importance

The field of Artificial Intelligence has been rapidly expanding in recent years. Because of this,
many estimates of existential risk stemming from Al have been increasing as well to match the
pace of these advancements. Carlsmith, for example, has doubled his estimation of an
existential threat from 5% to 10% after just over one year of progress (Carlsmith, 2022).

This stems from the probability of Transformative Al (TAI), or Al with capabilities that entirely
transform our current way of life, which currently is at 5-30% by 2070 per various estimates.
Transformative Al could very likely end up being a power-seeking force in the future, which has
a high risk of being an existential catastrophe, disempowering humans and subsequently
eliminating all future human potential. Power-seeking behavior in TAl is the likely root cause of
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these catastrophic scenarios (Carlsmith, 2022). With this in mind, it is crucial to steer Al values
away from power-seeking behavior.

RepE is particularly promising in aligning Al values, with results being seen with minimal mass
retraining. Because of this, expanding the efficiency of RepE is highly important in value
alignment and alignment broadly, giving us a powerful method of preventing unaligned Al
catastrophe.

1.2. Tractability

This research points to the highly likely existence of plastic periods in LLMs, which if recognized
and adopted, offer significant guidance to future alignment researchers and initiatives by
providing pivotal intervention times that would yield higher behavioral change.

Development of these techniques early are key to preventing an existential scenario, bridging
technical limitations that would otherwise lead to less aligned and possibly catastrophic Al in
the future.

In addition, research in this area would broadly contribute in revealing new key points/moments
of analysis in understanding model training dynamics and plasticity generally.

1.3. Neglectedness

Understanding model plasticity is currently a highly neglected area within Al Alignment broadly,
but is more specifically underdeveloped within Representation Engineering. While there has
been research analyzing neuroplasticity in neural networks on a small scale (Lyle et al., 2023),
this did not particularly address the plasticity of top-level “values” or representations. No specific
research has been done establishing critical periods of intervention/plasticity within the context
of RepE in LLMs. Thus, this research has the potential to vitally contribute to the field, adding to
the top-level approach RepE provides which is key in value alignment, which will be at the
forefront of preventing power-seeking catastrophic Al.

2. Overview of Current Literature

Large language models (LLMs) have transformed the landscape of natural language processing
(NLP). Despite their successes, a deeper understanding of how LLMs acquire, refine, and
stabilize internal representations during fine-tuning remains underdeveloped in the field. The
concept of plasticity—the model's proneness or ability to change behavior—has significant
implications for both theory and practice in the field of machine learning. In neural networks, the
degree of plasticity influences how well models can learn new tasks and model rigidity (Lyle et
al., 2023).
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Recent work in Representation Engineering (RepE) has sought to address this knowledge gap
by offering a methodology to both probe and steer the internal representations of LLMs (Zou et
al., 2023). RepE involves the extraction of steering vectors, which are latent directions in the
representation space that can be modified to influence model behavior.

This research builds on these developments, hoping to analyze LLM plasticity over the course
of fine-tuning. | specifically analyze how steering interventions vary in their effectiveness across
different stages of fine-tuning.

The study is grounded in recent advancements in model interpretability and RepE (Liu et al.,
2023; Cau et al., 2024). Notably, | draw inspiration from frameworks analyzing representational
geometry, which enable us to trace how specific steering vectors affect semantic alignment and,
more importantly, behavioral shifts in LLMs over time.

3. Theory of Change

Critical Periods of Heightened
Plasticity

RepE techniques applied efficiently with
greater results

Efficient Value
Alignment (away from Increased Control and
power-seeking Understanding of Al
behavior)

Safer Al with Aligned
Values

Chart 1: Theory of Change

This research contends the alternate hypothesis that there exist critical periods during the
fine-tuning of large language models (LLMs) when the application RepE can have an increased
impact on shaping model behavior. By identifying and exploiting these critical periods, | posit
that steering vectors can be applied more effectively to alter the model's internal representations
toward desirable behavior.
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By focusing on the trade-off of plasticity and representation stability, | contribute to a better
understanding of model dynamics and provide practical guidance for future alignment initiatives
seeking to fine-tune model behavior more effectively.

Improved efficiency in RepE interventions has the potential to enhance value alignment within
models, particularly under the Helpful, Honest, and Harmless (HHH) paradigm (Askell et al.,
2021). Ultimately, by refining our understanding of when and how to apply RepE during training,
we aim to ensure Al systems act with human-aligned ethical principles and behavior, preventing
catastrophic behavior brought about by misaligned ethical values.

4. Overview of Representation Engineering Methods

Zou et al., 2023 provides a detailed overview of RepE strategy. It entails two main steps:
probing (extraction) and steering.

4.1. Probing

During probing, sets of prompts are used to extract “concept” vectors from the model’s neural
activity. Essentially, we see how the model represents concepts within their activation states.

The key step of RepE concept vector extraction is to subtract the complement of a concept from
the concept. For example, the concept vector of honesty would be the subtraction of the vector
representative of dishonesty from honesty.

My method for extraction in this paper will be calculating the mean activation states of the last
hidden layer across many prompts for both honest and dishonest scenarios.

4.2. Steering

After acquiring the extracted representation as a concept/steering vector, to steer the model we
must apply it. To do this there are multiple methods. A conventional approach is to simply add
the steering vector at the end of a forward pass, directly affecting the output. However, since |
seek to understand how steering affects training dynamics as well, | employ a different
approach.

After acquiring the steering vector, | recalculate loss using the steering vector through a process
akin to regularization (detailed in 5.4). This allows me to monitor how training dynamics are
affected given different starting points and representations for steering.
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Image 1: Concept Vector Extraction (taken from Whener 24)

5. Methodology
The following outlines the key phases that were involved in the study.

5.1. Model Selection and Architecture Setup

| selected two LLM architectures to capture the nuances of plasticity across different models:
GPT-2 Small and GPT-2 Medium (Radford et al., 2019). These models are fairly simple
compared to SoTA LLMs, but they can still provide valuable insight and function for the sake of
my research (though, this is a limitation of my results that will be discussed later). In addition,
lack of computational resources made these options the most appealing.

Each model was initialized from its publicly available pretrained weights and prepared for
fine-tuning on trivia question-answer tasks. Total training/compute time for models was ~70
hours with one A100/L4 GPU (depending on availability), purchased through Google Colab
Pro+.

5.2. Model Training

Models were trained on the fine-tuning training data found in the Alignment for Honesty project
(Yang et al., 2023), consisting of 3 epochs of 4000 selected questions from the TriviaQA dataset
(Joshi et al., 2017), for 12000 total iterations. The data processing method was set to
‘“ABSOLUTE”, meaning | am not including confidence levels/indicators in my dataset. This was
done mainly to maintain the simplicity of the “Idk™ heuristics (Appendix D).

5.3. Steering Vector Extraction

During fine-tuning, steering vectors were extracted from the model's internal representations of
honesty at predetermined intervals (e.g., iteration 1200, 2400, 3600, 4800, 6000, 7200, 8400,
9600, and 10800). These vectors were calculated by prompting the model with honesty and
dishonesty adjacent messaging and identifying activation vectors within the model's embedding
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space. The mean dishonesty vector was then subtracted from the mean honesty vector,
resulting in our steering vector per strategies described in Zou et al., 23.

5.4. Steering Vector Application

After extraction for each intervention, the steering vectors were immediately applied to measure
their impact on model behavior (specifically honesty). Steering vectors were applied by
recalculating the cross entropy loss by temporarily adding steering vectors to the last hidden
state. This is shown mathematically as

h =h+ax
Lm = H(f(h/)vy)

L.=L,+a(L,,— L,)

where we let H(p, Q) be cross entropy loss, Y be true labels, h be hidden states, a be the
steering strength, = be our steering vector, and / be our model’s head function.

In layman’s terms, what we are doing is applying our “direction” (steering vector) a set distance
(steering strength) to our current location. We then recalculate the distance away from the ideal
location/state (loss). We then apply the new change/addition to loss with a set strength/multiplier
as well.

5.5. Evaluation Metrics

The effectiveness of RepE interventions was evaluated using NonAmbiQA processed by
Alignment for Honesty (Yang et al., 2023).

Honesty was chosen as the steering and evaluation metric of focus for this experiment due to its
simplicity. | define honesty similarly to Alignment for Honesty, as the model’s ability to answer
truthfully within the bounds of its knowledge. This means that refusing to answer a
question/acknowledging lack of knowledge will also be evaluated as honest (e.g. “l apologize,
but | don’t know the answer to that”).

Evaluation consisted of 100 trivia samples from the dataset, with the similarity score to the
expected responses being each sample score. Given “honesty” also requires measuring refusal
to answer without sufficient information, “Idk” responses, any responses that refused to answer

(e.g. “l apologize”, “| don’'t know”, “Not sufficient”) were given a 1.0 similarity score (perfect).
Heuristics to determine this can be found in Appendix D.
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5.6. Comparative Analysis

The results were then compared across intervention times, assesing the existence of any critical
periods during which RepE interventions had the most significant impact, determined by
evaluation score differences.

6. Technical Implementation of Steering During Training

The implementation of steering vector extraction was done as follows:

def get_activation_vector(model, tokenizer, prompts):
activation_ vectors = []
device = next(model.parameters()).device
for prompt in prompts:
inputs = tokenizer(prompt, return_tensors='pt', padding=True,
truncation=True).to(device)

with torch.no_grad():
outputs = model(**inputs, output_hidden_states=True)
activation = outputs.hidden states[-1].mean(dim=1)
activation_vectors.append(activation)
avec = torch.mean(torch.cat(activation_vectors), dim=0)
return torch.mean(torch.cat(activation vectors), dim=0)

We essentially feed the model “honesty” prompts and “dishonesty” prompts. The prompts used
were crafted to evaluate activation states for a variety of scenarios. Using the activation states
(the model’s internal representation of each prompt), | calculated a mean vector for best results.
List of prompts can be found in the full code repository. Additionally, heatmap visualizations of
all steering vectors extracted can be found in Appendix B.

Application of steering was done by recalculating loss, which was done like so (explained
mathematically in 5.4):

def steer model(model, tokenizer, outputs, labels, steering strength =
0.6):

device = next(model.parameters()).device

honesty vector = get activation vector(model, tokenizer,
honesty prompts).to(device)

dishonesty vector = get activation_vector(model, tokenizer,
dishonesty prompts).to(device)

hidden_states = outputs.hidden_states[-1]

honesty concept_vector = honesty vector - dishonesty vector
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honesty concept vector =

honesty concept vector.to(hidden states.device)
visualize activation_heatmap(honesty concept vector, method='standard')
modified_hidden_states = hidden_states + steering_ strength *

honesty concept vector.unsqueeze(9).unsqueeze(0)

original_loss = outputs.loss

logits = model.lm head(modified hidden_states)

modified loss = torch.nn.functional.cross entropy(logits.view(-1,
logits.size(-1)), labels.view(-1))

combined_loss = original loss + steering_strength * (modified_loss -
original loss)

return combined loss

To visualize steering vectors, the Seaborn library was utilized.

Full code | developed for the project can be found at
https://github.com/UltraTsar/NonTrivialRepE_ Timeline/tree/main.

7. Empiric Results

After roughly ~70 hours of computation, the following results were compiled.

Intervention Time (lteration) Average Evaluation Standard Deviation
Score
Baseline Not Applied 0.270 0.0514
1 1200 0.173 0.0028
2 2400 0.277 0.0431
3 3600 0.302 0.0389
4 4800 0.237 0.0007
5 6000 0.246 0.0513
6 7200 0.255 0.0421
7 8400 0.248 0.0308
8 9600 0.352 0.0734
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9 10800 0.285 0.0230

Table 1: GPT-Medium Evaluation Results

Intervention Time (Iteration) Average Evaluation Standard Deviation
Score
Baseline Not Applied 0.202 0.0525
1 1200 0.366 0.0826
2 2400 0.422 0.0796
3 3600 0.466 0.0462
4 4800 0.217 0.0237
5 6000 0.353 0.0565
6 7200 0.213 0.0186
7 8400 0.372 0.0688
8 9600 0.579 0.0864
9 10800 0.393 0.0752

Table 2: GPT-Small Evaluation Results

For loss graphs and internal representation visualizations for each intervention instance, please
see Appendix A and Appendix B.

From the table, we can loosely observe that there are general peaks in evaluation, indicating
that there are periods where RepE was applied that achieved higher results. However, we can
get more intuitive insight graphically, seen in Chart 2 and Chart 3.
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Chart 2: Graph of Evaluation Results for GPT-2 Medium with 95% Confidence Interval Error
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Chart 3: Graph of Evaluation Results for GPT-2 Small with 95% Confidence Interval Error Bars

From this, the intuitive trend is spotting a peak at both Intervention 3 and 8. We can also see
that, interestingly, the results for GPT-2 Small may be very closely correlated with those of
GPT-2 Medium, with an upward shift. This is promising as it indicates a possibly significant
trend, so further statistical analysis is warranted.

8. Statistical Analysis

My results are not normally distributed, seen through a histogram and Q-Q plot of GPT-2 Small
data.
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Chart 4: Histogram w/ KDE of GPT-2 Small Average Evaluation Results
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Chart 5: Q-Q Plot of GPT-2 Small Average Evaluation Results

More rigorously, performing a Shapiro-Wilk test yields a test statistic of 0.925 with a p-value of

0.403, which is quite large, indicating that my data is not normally distributed.

Thus, | must perform non-parametric tests instead. Specifically, | use the Kruskal-Wallis test* at
a 5% significance level to analyze whether overall differences across intervention times are

significant.
Model (Size) Statistic P-Value
Medium 21.9547 0.0050
Small 33.0736 5.9735e-05

Table 3: Kruskal-Wallis H Test Results
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*All code for tests performed are in the GitHub repository (stats.ipynb)

The generated p-values are extremely low and less than the significance level (0.05),
implicating my results to be statistically significant. Specifically, it implies that the differences in
evaluation in my data is statistically significant.

To take my analysis further, | perform a post-hoc Dunn test (5% significance level).This test is
pairwise, and it allows us to see which intervention times were significantly different from others.

A heatmap of results are seen in Image 2 and Image 3. They indicate that for both GPT-2 Small
and GPT-2 Medium, Intervention Times 3 and 8 had significantly greater evaluation results than
other intervention times.

Full raw results data for the post-hoc Dunn test are found in Appendix C.
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Image 2: Post-hoc Dunn’s Test Pairwise Comparisons for GPT-2 Medium Evaluation
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Image 3: Post-hoc Dunn’s Test Pairwise Comparisons for GPT-2 Small Evaluation (stricter
Bonferroni correction included)

This further supports my hypothesis that critical periods of intervention do in fact exist, as we
now have strong evidence supporting the fact that there are certain intervention periods that
perform statistically significantly better than others.

9. Conclusion

From my statistical analysis, it is clear that critical periods do in fact emerge over the course of
model fine-tuning, supporting my hypothesis that there are optimal periods of intervention,
adding evidence to the notion that the trade-off between model plasticity and representation
stability is minimized at certain times. In addition, this result was observed across 2 different
architecture sizes (GPT-2 Small and Medium) during the exact same intervention periods,
implying a possible general result.

This result can act as a guiding tool for future alignment researches to apply RepE techniques
more effectively and see better results when aligning and controlling Al values, leading to
greater transparency in LLMs and safer Al overall by improving our deterrence of power-seeking
behavior.

10. Discussion and Post-Fellowship

From the results, a somewhat clear trend is found. Post-fellowship, I'd like to verify the
hypothesis that these periods of heightened response are in fact due to the optimization of
representation stability and model plasticity during these times. Possible ways to do this would
be to analyze the change in steering vectors/extracted representations over time. Given that my
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limited heatmaps do indicate some representation stability currently, analyzing stretches of time
with stable/similar representations specifically could isolate model plasticity for analysis.

Separately, | hope to acquire greater compute in order to generalize this in some way to larger
architectures like Llama2-chat (7 billion parameters), while also using larger training and
evaluation datasets. GPT-2 is fairly limited in size so investigating how the pattern generalizes
to larger SoTA models would be a logical next step.l would also like to test whether these results
hold under different representations of concepts (emotions, morality, power-seeking, etc.).
Additional compute would also be useful in performing more sophisticated methods of extraction
such as Linear Atrtificial Tomography (LAT) could also lead to more detailed results.

In addition, it could be useful to test whether applying a steering intervention affects the
plasticity of future intervention times (e.g. applying at time 3 and seeing if time 8 has even larger
change).

Overall, this paper provides novel insight into critical intervention periods, and post-fellowship |
plan on extending this research to larger and more complex architectures and interventions to
assess how the results generalize and ultimately apply practically to large-scale developing Al.
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Appendices
Appendix A. Training Loss Graphs
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Intervention 2 (lteration 2400)
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Intervention 4 (lteration 4800)
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Intervention 6 (lteration 7200)
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Intervention 8 (lteration 9600)**
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**Iteration 8 for GPT-2 Medium had a very unusual loss graph. However, the results generated were not outliers.
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Appendix B. Heatmaps for Steering/Concept Vectors
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Intervention 2 (lteration 2400)
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Intervention 4 (lteration 4800)
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Intervention 6 (lteration 7200)
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Intervention 8 (Iteration 9600)
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Appendix C. Post-Hoc Dunn Pairwise Comparison Raw Results
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3 1 1 1 0.0207 |1 0.0189 |1 1 1
08 39
4 1 0.2025 | 0.0207 |1 1 1 1 0.0004 | 0.5408
01 08 73 73
5 1 1 1 1 1 1 1 0.2910 (1
69
6 1 0.1880 | 0.0189 |1 1 1 1 0.0004 | 0.5059
26 39 23 56
7 1 1 1 1 1 1 1 0.9051 | 1
99
8 0.7491 |1 1 0.0004 | 0.2910 | 0.0004 [ 0.9051 |1 1
71 73 69 23 99
9 1 1 1 0.5408 | 1 0.5059 |1 1 1
73 56

Appendix D. “Idk” Response Heuristics

The following code and patterns were used to detect “Idk” model responses. If detected, the
response was then given a “1.0” similarity score.

def check idk(response):

idk_patterns = [
r"\bapologize\b",

"\not aware\b",

"\bnot familiar with\b",

"\bnot make sense\b",

"\bnot able\b",

"\bdo not know\b",

"\bsorry\b",

"\bdon'?t know\b",

"\bi'?m not sure\b",

"\buncertain\b",

"\bunclear\b",

"\bno idea\b",

"\bcan'?t say\b",

"\binsufficient (information|data|knowledge)\b"

-
-
-
-
-
-
-
-
-
-
-
-
-
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] # Using Alignment for Honesty Heuristic + Extra Uncertainty Matching
print(response)
combined_pattern = '|'.join(idk_patterns)

ret = bool(re.search(combined_pattern, response.lower()))
if (ret == True):

print(response)
return ret
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