What EVEN is commitchain?

One approach for blockchain scalability derives from a simple question:
Why do Alice and Bob send every transaction to a global network for settlement?

What if both parties, Alice and Bob, could transact locally amongst themselves and only
send a single, and final update, to the global network.

This is the thought-process and idea behind layer-2 scalability. It simply reduces the number
of transactions processed by the global network.

Layer-2 scalability has been with us all along.

At a high level, most layer-2 systems (except channels) have common components:

- Locking funds (deposit). A user has to lock funds into the service via the layer-1
blockchain.

- Off-chain database. A list of accounts and their respective balances.

- Sequencer. One, or more entities, who are responsible for collecting the layer-2
transactions and deciding the order of execution.

- Off-chain onboarding. A user can receive coins on the service without any prior
interaction with a blockchain.

It is not immediately obvious, but the most popular and widely used example of a layer-2
system are cryptocurrency exchanges. They have been in operation for over 10 years, there
are several popular services, and they all effectively extend the functionality of
cryptocurrencies while keeping most transactions off-chain. However, they are custodial
systems and this brings us to the final properties of a non-custodial layer-2 protocol:

- Publicly verifiable. Any participant can verify the offchain database’s correctness,
- Layer-1 security. The protocol’s integrity and security is derived from the layer-1
blockchain.

We FULLY trust custodial sequencer

Full custody.

They can freeze/confiscate/lose our funds.

Not auditable.
The layer-2 database is opaque and not publicly auditable.
Are they running a fractional reserve? Who knows.
Custodial Sequencer

Offers super user experience, low Ordering of transactions.

fees and no need to learn anything) . o
about crypto! It is up to the sequencer to decide when a transaction is

executed (and in what order).
Coin go up, forever, to moon.

Figure 1: Historically, layer-2 has had fully trusted and custodial sequencers.

Cryptocurrency exchanges are fully custodial and do not resemble the layer-1 blockchain, in
any manner, in terms of security. Exchange operators can freeze and confiscate our funds,
and even worse, they have already lost billions of dollars worth of funds over the years.
Ultimately the user must give up control of their funds to use the service.

On the other hand, the off-chain database of account balances is not auditable or publicly
accessible. It is impossible to verify whether a cryptocurrency exchange is running a
fractional reserve (or in other words, if they have lost the user’s funds). While proof of
reserves protocols have been proposed to help alleviate the fractional reserve issue, the
protocols are very cumbersome to implement and exchanges have little incentive to pursue
them.

Today, we blindly trust exchanges with our funds. This brings us to the final design goal for a
layer-2 system:

Can we bypass transacting on the layer-1 blockchain
while still allowing users to maintain self-custody of their funds?

Yes, it is possible. Layer-2 protocols leverage on-chain smart contracts to hold custody of
the user’s funds and to constrain how the third party service can interfere (or manipulate) a
user’s transaction. If successful, the intermediary should become a sequencer who is only
trusted to sequence and finalise transactions (i.e, a sequencer). However, the design and
implementation of such a system is non-trivial. It brings a host of challenges that we will
explore throughout this article including whether we need to review the sequencer’s
reputation, how the off-chain data is published for public review, the process for finalising a
layer-2 transaction, and of course, the extent to which we can truly bypass the layer-1
blockchain when transacting.

Let’s explore rollups, and more generically, commitchains, from
first-principles.

Prominent voices have proposed a definition that is widely used to inform non-experts what it
means to be a layer-2 protocol:

A system is only considered layer-2 if the protocol’s integrity and security is
derived from the parent blockchain (Layer-1).

The motivation is to provide clarity and distinguish that protocols, like sidechains, are
not layer-2 protocols.

However, it is still an ambiguous definition.

It does not break down what it really means to derive integrity or security from the
layer-1 blockchain. Our task is to unravel the ambiguity and as we will see, it is
impossible to fully resemble the same security model as the layer-1 blockchain. But it
is possible to get pretty damn close and it is this closeness that becomes the
distinguishing features of different layer-2 protocols.

We will explore the following:

- What is a commitchain and how does it work?

- What are the protocol assumptions and the wider environment in which the
commitchain is deployed?

- Who is the adversary and what is their power?

- What are the security goals that must be satisfied before a commitchain is
“secure”?

Afterwards, we evaluate the mechanisms and solutions used by layer-2 protocols to
get “close” to the security of the layer-1 blockchain.

Overview of layer-2 protocols

Generally speaking, the goal is to move transaction processing from the layer-1 blockchain
to the layer-2 blockchain. If we are successful, then only the local parties involved in the
transaction need to process it and not the global peer-to-peer network.

Transaction processing can be broken into:

- Data. The bytes of the transaction. It includes the target contract address to execute,
the function name and its inputs. It can also include the expected output of the
transaction.

- Computation. Replicating the transaction execution to verify the function and input
corresponds to the expected output.

- State updates. The smart contract state, which includes all variables and its
bytecode, is updated after processing the transaction.

The best case scenario is to keep the data, computation and state updates in the layer-2
system, and this is what we call an off-chain protocol. However, over the years, we have
witnessed unique challenges at keeping all three aspects off-chain. As a result the most
popular approach, the rollups, only keep computation and state updates off-chain. We still
call this a layer-2 protocol as it is a mix of local and global transaction processing.

There are two flavours of layer-2 protocols:

e State Channels. A small set of parties lock funds and continuously replace
transactions amongst themselves. It requires all N parties to agree on every state
transition and the layer-1 blockchain is only consulted if there is a dispute.

e Commitchains. A chain of checkpoints, proposed by a sequencer to the layer-1
smart contract, that dictates the order of execution for all layer-2 transactions.

Our article is only focused on commitchains. In a future article, we will discuss how state
channels alongside other approaches can solve the problem of routing value across multiple
ledgers (and commitchains).

What is a commitchain?
At a high level, we need to first design a new blockchain network.

A blockchain network. A ledger that records the state of all accounts. It can have its own
smart contract environment with a virtual machine and programming language. Users still
have a private-public key pair to authorise transactions that will update the ledger’s database
once the transaction is finalised in the blockchain. And of course, we have sequencers
(block producers), who will come to agreement in regards to the longest chain and the
transactions it includes.

Periodic Checkpoints

Sequencer

Collect transactions
and post checkpoint

Time

o]

Ledger State Final database state after
i processing all finalised
| Transaction 1 transactions
Checkpoint by . I - .
sequencer Transaction N Layer-2 database

Figure 2: At a high level, the sequencer posts checkpoints that can be processed to
re-compute the layer-2 database.

Unlike a new blockchain network, a commitchain, as the name suggests, is a chain of
commitments that are posted to the layer-1 blockchain:

- Checkpoint (commitment). A cryptographic commitment to a list of transactions
alongside the new ledger state.

A commitchain is illustrated in Figure 2 and there are two agents who are responsible for
managing the commitchain:

- Sequencer. Responsible for collecting and ordering layer-2 transactions, and for
periodically posting a checkpoint to the layer-1 blockchain.

- Layer-1 smart contract. Responsible for defining and enforcing the validity rules for
the commitchain.

It becomes a prover-verifier model, where the sequencer (prover) wants to convince the
layer-1 smart contract (verifier) that the commitchain is correct. The layer-1 smart contract
will only accept a new checkpoint as valid if:

transition(list_of transactions, previous_ledger_state) === new _ledger_state

Put simply, every state transition for the layer-2 database must be verified and enforced by
this layer-1 smart contract. However, the layer-1 smart contract is computationally limited
and it cannot re-execute all transactions itself. Thus, a third party is necessary to assist the
layer-1 smart contract to verify the commitchains correctness.

How the third party is constructed (mathematically as a zero knowledge proof, or a fraud
proof challenger) is often the most significant topic amongst rollup providers. It has
implications on the capability and functionality for the layer-2 protocol. We’'ll dive into it
shortly.

As a final note, it is the layer-1 smart contract and not the sequencer, who holds the user’s
funds and only allows the funds to be spent if the user has authorised it.

Understanding and comparing rollups

Security model for layer-2 protocols

In this section, we’ll cover the protocol assumptions, the wider environment and the
adversarial model for commitchains. Once we have the setup outlined, we can cover the
security goals for a commitchains, or in other words, what it really means for a commitchain
to be secure.

Protocol assumptions

To summarise, we assume the following about the layer-1 blockchain:

- Neutral infrastructure. The layer-1 block producers are independent and financially
rational.

- Consistent view. All users have access to the parent blockchain and its historical
transaction data.

- Eventual delivery. The parent blockchain will accept a recently published
transaction within N blocks if it pays an appropriate network fee.

- Smart contracts. A smart contract is a trusted third party with public state and its
underlying blockchain is immutable & cannot be compromised.

- Limited computation. The parent blockchain (and smart contracts) has considerably
less computational resources than the commitchain network.

Adversarial threat model

A threat model lets us define the power and strength of an attacker who may want to break
our system. The Dolev-Yao model is typically used for security protocols. It is a powerful
attacker who can read and control the flow of all messages. The only restriction placed on
the attacker is that they cannot compromise well-known cryptographic protocols (and of
course, protocol assumptions). Layer-2 protocols should assume a Dolev-Yao adversary:

Adversarial Model .
Alice
o =
; C);\O(\ © __/---""/ ORABL) Sequencer
'B\’\%a \(\3\0 7 & Lay
T O f'_r_ 2 .

.

ol [[[o]

T [oTel]

(5 Message flow control.

Adversary can view, order and drop all
Checkpoint messages except for transactions sent to the
by operator layer-1 blockchain.

Message flow control. The adversary can control the order of all messages except for
messages sent to the parent blockchain (e.g. eventual delivery protocol assumption) and
they can selectively drop messages in the layer-2 protocol (e.g. censorship). Note, if the
network has a gossip protocol, then it weakens the adversary such that they can only control
what transactions are included in their blocks but not what transactions are propagated
across the layer-2 network.

https://en.wikipedia.org/wiki/Dolev%E2%80%93Yao_model

Adversarial Model '

Sequencers

Aliﬁce ,ﬂ\ @ /ﬁ\

N N — Corrupt nearly all parties
O/ / o
Only one honest user and the blockchain

Checkpoint
(smart contract) vs everyone else.

by operator

Corrupt nearly all parties. The adversary can corrupt all sequencers (e.g., there is
effectively only one sequencer) and N-1 users (e.g. all users except the honest user). We
assume the adversary cannot interfere with the parent blockchain’s execution (smart
contract protocol assumption). As a result, there are two honest users, the user themselves
and the parent blockchain. Note, there are some layer-2 protocols that will weaken this
threat model by assuming the user can become a sequencer and thus there is at least 1
honest sequencer at some point in time.

Well-known security properties for layer-2 protocols

To recap, we assume the parent blockchain will reliably accept transactions within X blocks
and that the adversary can corrupt all parties except for the layer-1 smart contract and an
honest verifier.

With this backdrop in mind, it allows us to provide a list of security properties that a layer-2
protocol should satisfy in order for the system as a whole to be considered secure:

e Data availability. Users can always access the layer-2 system’s historical
transaction data in order to re-compute the entire off-chain database,

e State transition integrity. The parent-chain will enforce the integrity (correctness) of
a roll-up block. No transaction can perform any invalid state transitions,

e Withdrawal integrity. Given the rollup data, the rollup checkpoints and the parent
blockchain, a user can withdraw their coins without the sequencer’s cooperation.

If all properties are satisfied, then it ensures a user can re-compute the entire off-chain
database (or at least, compute its latest state) and independently verify its integrity and
correctness. And in the worst-case scenario (e.g. layer-2 system goes offline), then the user
can safely withdraw their funds in a timely manner.

As we will soon see, how a layer-2 protocol satisfies these properties will result in practical
tradeoffs that may not withstand an all-powerful adversary and instead require additional
protocol assumptions for security.

What about the less well-known security issues that arise?

While the sequencer cannot tamper with the transaction content or prevent a user
withdrawing their funds, there are other areas of concern:

Maximal extractable value. The sequencer can control the ordering of transactions. They
can decide to drop (censor) your transaction, or just like on Ethereum, they can attempt to
extract value by sandwiching, front-running or back-running your transaction. There is an
on-going debate whether extractable value is an outright attack on the system orifitis a
potential business model for layer-2 protocols. Thankfully, it is possible to constrain
extractable value to a certain extent via smart contracts (i.e., think of uniswap slippage
controls).

Fast path or path. Assuming the sequencer is well-behaved, then the user can enjoy the
fast path for transaction confirmation. The user can send the sequencer a layer-2 transaction
and safely assume it will be eventually mined and executed as expected. However, if the
sequencer does not have a good reputation or if the layer-2 protocol does not guarantee
which sequencer can send the next block of transactions, then the user must wait until the
layer-2 transaction is finalised and they cannot simply accept an acknowledgement from the
sequencer. In the worst-case, the user may need to send the layer-2 transaction to the
layer-1 smart contract directly (if supported). Thus, it is important to consider how
sequencers are appointed and the consensus protocol (e.g. how to reach agreement on the
transaction execution) when evaluating the layer-2 protocol’s user experience.

Mass exit problem. All user deposits are locked into a layer-1 smart contract and it can be
described as a ‘pot of funds’. Each user has a potential claim to some funds in the pot
according to their balance in the layer-2 system. It is possible that due to a bug or an
unforeseen attack, the system may become a fractional reserve due to a loss of funds. If so,
then the pot of funds is no longer sufficient to honour all user withdrawals. This becomes a
‘mass exit problem” as every user has an incentive to exit the system before other users as
it is the last remaining users who will bear the loss. Of course, there are other reasons why a
mass-exit can be triggered, but it typically boils down to loss of funds, or loss of access to
withdrawing funds

Security properties definitions & explanations

In the following, we will explore the defined security properties alongside the issues that may
impact the security of a rollup. For each issue, we iterate on a list of solutions that can help
alleviate it.

Sequencer Profile

As mentioned previously, sequencers offer a fast-path for transaction inclusion in the rollup
chain. Our sequencer profile focuses on how to appoint a sequencer and what rate-limits
who can become a sequencer, the consensus protocol that governs how to progress the
rollup chain and finally whether the sequencer can provide any assurance to the user about
the final state of their transaction while it is still off-chain and pending. pending off-chain.

Sequencer Appointment Protocol

In most rollups, a fast-path for transaction inclusion is offered by sequencers. They are
responsible for accepting a user’s transaction and responding with an acknowledgement that
the transaction will eventually be finalised. We call this the “fast-path” as sequencers are
crucial to the optimistic operation of a rollup. As such, the identity and reputation of a
sequencer remains important, and there must be an appointment protocol to rate-limit, in
as-close-to permissionless manner, who can offer the fast-path to users.

Central Authority. The sequencer is pre-determined by the team who set up the system
and no one else can participate.

Vote. A DAO, or some other voting mechanism, can vote in a set of sequencers to run the
network.

Stake. Any user can become a sequencer if they are willing to stake X value in the rollup
contract.

Consensus Protocol.

A consensus protocol allows one or more agents to reach agreement on a single decision. In
the case of rollups, the sequencers may need to agree upon the batch of transactions to
order and/or the final execution of the transactions.

Central Authority. A single sequencer is responsible for publishing

Round robin. The bridge contract provides a time slot for each sequencer to submit a new
batch of transactions and checkpoints. If the sequencer misses their allocated time slot, it
will move onto the next sequencer. TOOD: Binance Smart Chain is a round-robin, although it
is not a rollup.

Majority vote (PBFT-like). A set of sequencers must agree upon the next checkpoint

Off-chain assurance for layer-2 transactions

All public rollup networks will have a public peer-to-peer gossip protocol for propagating new
pending transactions. The computational, storage and bandwidth requirements may far
exceed the layer-1 blockchain (Ethereum) and the number of validators who can keep up in
real-time may be reduced. As such, the rollups are investigating protocols for providing

guarantees to the user (a light client) about the status of their transaction and how it will be
executed.

Trusted sequencer: meaning there is only one sequencer centrally maintained by the
organization so it can be held accountable. They have only 1 trusted one now and want to
move to decentralized fair sequencer at some point in the future.

Transaction receipt: The user receives a signed receipt from the sequencer that their
transaction will be included in the next batch of transactions sent to the layer-1 blockchain. If
the transaction is not included, then the user can provide evidence to the on-chain smart
contract and punish the sequencers. Who signs the message depends on the consensus
protocol by the rollup (e.g.a set of validators, then a super majority may be required). It does
not necessarily promise a fixed position in the transaction queue.

Temporary fact-blocks: The sequencer will publish to a peer-to-peer network a new block
that confirms the execution for a batch of transactions. This is considered a ‘fact’ as the
execution is confirmed and any user can publish the fact-block to the blockchain. The blocks
are considered temporary as the canonical chain and the final ordering of blocks is decided
by another process at a later stage.

Fair-ordering protocols. A group of sequencers will work together to ensure that layer-2
transactions are acknowledged and the final transaction ordering that is sent to the layer-1
blockchain is “fair”. Here, fair implies no single sequencer can impact the ordering of
transactions for their own gain.

MEYV auctions. A sequencer will publish a list of pending transactions and searchers will
propose an ordering that maximises extraction of value. There is no guarantee a transaction
will be included or its final position in the queue.

Finality guarantees by layer-1

This relates to the order in which the layer-1 blockchain receives the layer-2 transactions for
global ordering and when the layer-1 blockchain is convinced about the final execution of a
layer-2 transaction. It does not take into account any off-chain promises the sequencers
have offered its users as the promises can be ignored (and potentially slashed in response).

Global ordering before execution. The layer-1 blockchain is responsible for maintaining a
queue of pending layer-2 transaction data and it will enforce future checkpoints posted by
sequencers that layer-2 transactions will be executed in the same order as the queue.
Sometimes it is called an “inbox” smart contract.

Execution before global ordering. The layer-1 blockchain will record “facts” about a
transaction’s execution and how the layer-2 database should be updated. The fact may
include a single transaction or a batch of transactions. However, the fact is not necessarily
ordered or included in the final canonical chain. This is a separate process that occurs after
the fact is posted.

Globally ordering and execution simultaneously. The sequencer will post the layer-2
database updates (transactions) alongside the checkpoint to confirm their execution. It is a
single process and the ordering/execution is determined at the same time.

Data Availability

A solution to guarantee a rollup’s history is publicly available. Note, depending on the
solution to state transition integrity, the history does not necessarily need to include data on
“‘why” the layer-2 database is correct and instead it should contain sufficient data to allow a
user to independently re-compute the layer-2 database themselves. This is useful for the
user as they can verify the database’s integrity and inspect the latest finalised state for
accounts (and contracts) on the network.

There are four solutions to the problem:
- Trusted party (or committee). An external set of parties will sign a message to
vouch that they have the transaction data and the signatures are submitted to the
bridge contract such that it can verify the attestment.

- On-chain challenges for data availability. A checkpoint has a challenge period
(such as two weeks) and a user can challenge the state defender to reveal data on
the blockchain. (i.e., all data is organised as leaves of a merkle tree and the user can
request for “leaf 5” to be revealed).

- Transition history is attached to a database entry. A coin is fixated to an entry in
the layer-2 database. The coin can only be withdrawn if the owner can prove that all
state transitions (up to this point) are valid and they are indeed the real owner.

- Post data to the layer-1 blockchain (Ethereum). All data is posted to the layer-1
blockchain and the bridge contract will verify it is available before accepting a
checkpoint.

State Transition Integrity

The bridge contract on the layer-1 blockchain is responsible for checking that all posted
checkpoints for the rollup are valid, well-formed and it does not contain any invalid
transactions. There are two approaches for solving the problem that include fraud proofs and
validity proofs.

Fraud proof.

Given a new checkpoint from a state defender, Ethereum will wait for a fixed period of time
before considering the checkpoint final. Any external observer has ample time to provide
evidence (proof of fraud) that the checkpoint contains an invalid state transition and it should
not be accepted. There are two fraud proof systems:

- One-round fraud proof. There is a commitment to every state transition that moves
from the previously finalised checkpoint to the new asserted checkpoint. An external
observer can send the pre-state, the transaction, and the post-state to the layer-1
blockchain. The layer-1 blockchain can verify there is an intermediary state
commitment for the pre-state and the post-state. It will execute the transaction (given
the pre-state) and it will compare the computed post-state with the checkpoint’s
commitment. If the post-state does not match, then the checkpoint is considered
valid.

- Multi-round fraud proof. Given two checkpoints, the state defender and the
challenger agree upon the number of instructions. They perform a binary search on
the list of instructions until they identify an instruction they disagree upon (disputed).
The layer-1 blockchain will execute the single instruction to determine if it is invalid or
not.

TODO: | wonder if it makes sense to have a small table that compares the two fraud proofs?
Validity proof.

Ethereum will verify a proof alongside the checkpoint and it will be immediately convinced
the checkpoint is valid. (i.e., it is proven beyond reasonable doubt that there are no invalid
state transitions).

TODQO: Is there a good way to explain the differences in the proving systems? Typically we
have trusted setup, proof size, etc. But it is not that great a distinction compared to the fraud
proofs.

Self-enforcing State Transitions

A user’s funds must remain safe in the event the rollup network is offline or the sequencers
are malicious. Ideally, the user should be able to transact to unwind their positions in some
smart contracts and then to withdraw their coins from the bridge contract. This requires the
bridge contract to self-enforce liveness and progress on the rollup network based on
transactions submitted by the users. There are a few solutions to the problem:

- No censorship resistance. All transactions must be proposed by the sequencer and
the user cannot self-enforce a transaction without the sequencer’s cooperation.

- On-chain transaction queue. The bridge contract maintains a queue of pending
layer-2 transactions for execution. Any user and the sequencer can submit
transactions to the queue for ordering. Typically, the transactions sent by the
sequencer have priority in the ordering. When the final transaction ordering is set by
the bridge contract, then a state defender can submit a new checkpoint that asserts
the final execution of transactions. decides the final ordering of layer-2 transactions
for execution. An analogy for this approach is a message “inbox” and all users can
send messages to the inbox.

- Permissionless sequencer. Anyone can become a sequencer (depending on the
rate-limiting mechanism used) and they will eventually have an opportunity to include
a transaction in the next checkpoint.

Max Exit Potential

If the security guarantees of a rollup system is broken, then it is possible for the bridge
contract to no longer allow the user to redeem their full balance back onto the layer-1
blockchain. A mass-exit is when users can foresee that the security guarantee will be broken
and compete amongst themselves to remove their coins before others. There are two events
that can result in mass exits, potential-claim risks and data availability risks.

Potential-claim risks. In most rollups, there is not a one-to-one linkage of coins held by the
bridge contract and the coins used on the rollup network. Instead, the coins on the rollup
represent a potential-claim to a corresponding quantity of coins in the bridge contract. If the
state transition integrity property is broken and the adversary can remove a portion of the
coins held by the bridge contract, then it will no longer be possible for users to redeem their
full balance. As such, the first users to exit will redeem their balance and the final users will
lose their balance.

Data availability risks. Users need to access the layer-2 database in order to convince the
bridge contract that they have a positive balance and their intent to withdraw it (including
unwinding any positions). In most rollups, the latest state of the layer-2 database is required
to interact with the bridge contract and if the data is missing then the user cannot
self-enforce state transitions with the bridge contract. As a result, if it becomes clear that the
data will not be available in the next epoch, then all users will rush to withdraw their coins
before the data becomes unavailable.

Performance

In this section, we study the scalability of the proposed rollup protocols. We use a single
metric for assessing scalability, gas used by the layer-1 blockchain, as that is the ultimate
bottleneck faced by all rollups.

Data type

We consider the type of data that is sent to the layer-1 blockchain. This data can be split into
two components. It may contain the “why” this transaction is valid and it will contain the
“‘how” to update the layer-2 database.

Full transaction. A transaction that contains the user’s signature, the function and data to
be executed, and miscellaneous data

Compressed transaction. A transaction that contains instructions on how to update the
database, but it does not contain data that proves it is valid. For example, it may require the
verifier to execute a function, but it does not contain a signature from the user to authorise it.
(i.e., no signature from the user).

State diff. A database update that instructions how to modify existing state. It may not
contain transaction details, it may represent the results of more than one transaction, and it
will not contain evidence for why it is a valid update. For example, it may state to update
Alice’s balance by one coin.

As a note, a compressed transaction or state diff is mostly only possible with
zero-knowledge rollups. A zkproof can vouch for why the database is valid without publishing
the full details of a transaction. There is some work towards compressed transactions for
optimistic rollups, but so far it is application-specific and limited.

	What EVEN is commitchain?
	Layer-2 scalability has been with us all along.
	Let’s explore rollups, and more generically, commitchains, from first-principles.

	Overview of layer-2 protocols
	What is a commitchain?

	Understanding and comparing rollups
	Security model for layer-2 protocols
	Protocol assumptions
	Adversarial threat model
	Well-known security properties for layer-2 protocols
	What about the less well-known security issues that arise?

	Security properties definitions & explanations
	Sequencer Profile
	Sequencer Appointment Protocol
	Consensus Protocol.
	Off-chain assurance for layer-2 transactions ​
	Finality guarantees by layer-1

	Data Availability
	State Transition Integrity
	Fraud proof.
	Validity proof.

	Self-enforcing State Transitions
	Max Exit Potential

	Performance
	Data type

