Proposal: Support for reading iceberg
v2 table

Goals
1. Support for reading V2 Format

Non-Goals

1. Pushdown optimization of Delete files

BackGround

Iceberg V2 format is a format that supports row-level delete, which can support deleting row
data that meets certain conditions. You can refer to https://iceberg.apache.ora/spec/ to view
the specific delete related spec. V2 mainly introduces delete files, including position delete
and equality delete files. At present, there are more and more customers of V2, and the
demand for V2 analysis of StarRocks is also increasing.

Position Delete Files

Field id, name Type Description

2147483546 file_path string Full URI of a data file with
FS scheme. This must
match the file_path of the
target data file in a
manifest entry

2147483545 pos long Ordinal position of a
deleted row in the target
data file identified by
file_path, starting at 0

2147483544 row required struct<...> [1] Deleted row values. Omit
the column when not
storing deleted rows.

Equality Delete Files

For example, a table with the following data:

1:id | 2: category | 3: name

1 | marsupial | Koala

https://iceberg.apache.org/spec/

2 |toy | Teddy
3 | NULL | Grizzly

4 | NULL | Polar
The delete id = 3 could be written as either of the following equality delete files:

equality_ids=[1]

equality_ids=[1]

1:id | 2: category | 3: name

| |
3 | NULL | Grizzly
The delete id = 4 AND category IS NULL could be written as the following equality delete file:

equality_ids=[1, 2]

1:id | 2: category | 3: name

| |
4 |NULL |Polar

Design
Iceberg internal implementation

1. DeleteFilter provides filter API, which can be called directly by the engine side; at the
same time, it provides posAccessor that can return the recorded position information
for subsequent processing; Delete Filter also support applyPosDeletes and

applyEqgDeletes

DeleteFilter<T>

Schema
MetadataColumns.
Metadat ylumns .

String

>> applyEgDeletes () {

isInDeleteSets = Lists.newArrayList ()

sEmpty ()) {

isInDeleteSets

Multimaps.newMultimap (Maps.newHashMap (), Lists::newArrayList)
(DeleteFile delete :) |
filesByDeleteIds.put (Sets.newHashSet (delete.equalityFieldIds ())
delete)
}

(Map.Entry<Set<Integer>, Collection<DeleteFile>> entry
filesByDeleteIds.asMap () .entrySet ()) {
Set<Integer> ids = entry.getKey ()
Iterable<DeleteFile> deletes = entry.getValue ()

Schema deleteSchema = TypeUtil.select (

StructProjection projectRow = StructProjection.create(
deleteSchema)

Iterable<Closeablelterable<Record>> deleteRecords =
Iterables.transform(deletes
delete -> openDeletes (delete, deleteSchema))

Closeablelterable<Record> records = Closeablelterable.transform(
Closeablelterable.concat (deleteRecords), Record::copy)

StructLikeSet deleteSet = Deletes.toEqualitySet (
Closeablelterable. transform(
records, record —->
InternalRecordWrapper (deleteSchema.asStruct ()) .wrap (record))
deleteSchema.asStruct ())

Predicate<T> isInDeleteSet = record ->
deleteSet.contains (projectRow.wrap (asStructLike (record)))
isInDeleteSets.add(isInDeleteSet)

isInDeleteSets
CloseableIterable<T> findEqualityDeleteRows (Closeablelterable<T>
records) {
Predicate<T> deletedRows = applyEgDeletes () .stream/()
.reduce (Predicate: :or)

.orElse (t ->)

Filter<T> deletedRowsFilter = Filter<T> () {
@Override

shouldKeep (T item) {
deletedRows.test (item)

deletedRowsFilter.filter (records)

Closeablelterable<T> applyEgDeletes (Closeablelterable<T> records)

Predicate<T> remainingRows = applyEgDeletes () .stream()
.map (Predicate: :negate)
.reduce (Predicate: :and)
.orElse (t ->)

Filter<T> remainingRowsFilter = Filter<T> () {
@Override
shouldKeep (T item) {

remainingRows.test (item)

remainingRowsFilter.filter (records)

Closeablelterable<T> applyPosDeletes (Closeablelterable<T> records)

-isEmpty ()) {

records

List<CloseablelIterable<Record>> deletes = Lists.transform/(

: :openPosDeletes)

.stream() .mapToLong (DeleteFile: :recordCount) .sum() <

) |
Deletes.filter (records ::pos
Deletes. toPositionIndex (deletes))

}

Deletes.streamingFilter (records
Deletes.deletePositions (deletes))

}

Closeablelterable<Record> openPosDeletes (DeleteFile file) {
openDeletes (file)

2. StructLike provides get API for reading specific fields

StructLike {

{

3. Position Delete

o The Position Delete file stores deleted row information

o Inthe call to DeleteFilter filter, applyPosDeletes will be done

o The actual logic of applyPosDeletes is to filter the data according to the
position information stored in the delete file and the recorded position
information.

4. Equality Delete

o The Equality Delete file stores the corresponding predicate conditions

o Inthe call to DeleteFilter filter, applyEqDeletes will be done

o applyEqgDeletes first generates a memory filter condition based on the
Equality Delete file, which is an and predicate; then use this predicate to
compare the record content to filter the data

Solution

// Comments welcome
1. BE defines StarRocksRow, which holds Chunk objects to avoid row-column
conversion
2. FE obtains the relevant information of the delete file and sends it to BE to generate
DeleteFilter
3. Timing StarRocksDeleteFilter, there are two schemes
a. JNI calls Java API
b. C++ rewrites the logic of Delete Filter

Reference

e Trino https://github.com/trinodb/trino/pull/11642/files
Iceberg v2 design doc

h : . le.com ment/d/1Pk34 iOfVCRc-sixfh XZfzvxwum1 -
mwK38/edit#¥heading=h.g4del2n8m0Ohv

https://github.com/trinodb/trino/pull/11642/files
https://docs.google.com/document/d/1Pk34C3diOfVCRc-sfxfhXZfzvxwum1Odo-6Jj9mwK38/edit#heading=h.g4del2n8m0hv
https://docs.google.com/document/d/1Pk34C3diOfVCRc-sfxfhXZfzvxwum1Odo-6Jj9mwK38/edit#heading=h.g4del2n8m0hv

