Chapter 3 Outline Scientific Measurement

Section 3.1 – Measurements and Their Uncertainty

• A	is a quantity	that has
both a	and a	
	pically used in the scie	
	, a given	
•	oroduct of two numbe _ and 10 raised to a _	
	tation, the per equal to or greater 	
Sample Problem	ms	
Write the follow notation:	ving numbers in scienti	ific
39400000		
2800		

0.000567
0.0000002
Write the following numbers in regular notation:
3.22 x 10 ⁴
2.1×10^{-5}
8×10^2
7.90×10^{-6}
is a measure of how
a measurement comes to the actual or
·
is a measure of how close a
of measurements are to
Error =
The is the correct value.
The is the value
measured in the

The	is the absolute value of	Zeros	significant figures are
the error divided by the		significant. Ex: 3005 or 1.083	
Percent Error =		Zeros (†c	o the left) the significant
So in other words,		figures are not signif	ficant. Ex: 0.07902 or 0.6932
● %E =		Zeros (to t	he right) the significant
• /		figures AND after the decimal place are	
Sample Problem		significant. Ex: 20.3200 or 63000	
A block of alur	minum has a mass of 147.3g. A	Numbers that can be	oe and
student measu	res the mass of the block as		la constantinita de constantini
138.9g. What is the student's error?			have an infinite number of
		significant figures. 3	70 crayons or 1km = 1000m
What is the percent error?		 Sample Exercise 	
		1 How many significant	at figures are in each
		1. How many significar	ii ligures are in each
		measurement?	
The	in a	a. 123 m	d. 22 meter sticks
measurement	include all the digits that are		
, plu	s a last digit that is		
Rules for Significant Figures		b. 40506 mm	e. 0.07080 m
Rules for Signifi	cant rigures		
Every	digit is significant. Ex: 254 or		
65.43		c. 9.8000 x 10 ⁷ m	f. 98000 m

• Practice Exercise

- 1. How many significant figures are in each measurement?
 - a. 0.05730 m
 - b. 8765 m
 - c. 0.00073 m
 - d. 8.750 x 10⁻² g
- In general, a _____ answer cannot be more precise than the _____ measurement from which it was calculated.
- Addition and Subtraction
- When ______, your answer can only have the same amount of ______ as the number with the ______ of decimal places.

Sample Exercise

Calculate the sum of the three measurements. Give the answer to the correct number of significant figures.

$$12.52 \text{ m} + 349.0 \text{ m} + 8.24 \text{ m} =$$

Practice Exercise

Perform each operation. Express your answers to the correct number of significant figures.

When ______, your answer can only have the same amount of _____ as the number with the _____ amount of significant figures.

Sample Exercise

Perform the following operations. Give the answers to the correct number of significant figures.

$$7.55 \,\mathrm{m}\,\mathrm{x}\,0.34 \,\mathrm{m} =$$

Practice Exercise

Solve each problem and report your answer with the correct amount of significant figures.

$$2.10 \, \text{m} \, \text{x} \, 0.70 \, \text{m} =$$

Section 3.1 Assessment

- 1. How are accuracy and precision evaluated?
- 2. A technician experimentally determined the boiling point of octane to be 124.1°C. The actual boiling point of octane is 125.7°C. Calculate the error and the percent error.
- 3. Determine the number of significant figures in each of the following:
- a. 11 soccer players
- c. 10800 m

b. 0.070020 m

d. 5.00 m^3

4. Solve each of the following and express your answer with the correct number of significant figures.

a.
$$0.00072 \times 1800 =$$

b.
$$0.912 - 0.047 =$$

Section 3.2 – The International System of Units

The International system of Units (SI) is a revised version of the ______ that scientists use around the world.

Quantity	SI Base Unit	Symbol
	meter	m
mass		kg
temperature		K
time	second	
amount of substance		mol
luminous intensity	candela	
electric current	,	A

______ are used to show a very _____
or _____ quantity.

For	your prefixes sh	eet it is important to
rem	nember the follo	owing:

Example of Base Units	Example of Prefix Units
m	cm
L	mL
g	kg

Write the conversion	n factors for	the following:
----------------------	---------------	----------------

- a.cm 🗆 m
- b. g □ kg
- c. $s \square ns$
- d. dL \square L
- Some units are a _____ of SI base units. These are called _____.
- Volume = length x width x height
 (m) (m) =
- Density = $\underline{\text{mass}}$ (kg) = $\frac{\text{volume}}{\text{volume}}$ (m³)

If the particles are, then		c. 56°F □ K
the Kelvin tempera	ture is	
Since the particles cannot go slower than, then the Kelvin scale does not have any		or supply The SI unit of energy is the In America, we use instead of
The following formula	las are used to convert	Joules.
between temperat	ures:	
K = °C + 273	°C = 5/9(°F – 32)	Section 3.2 Assessment
°C = K – 273	°F = 9/5(°C) + 32	 What are the SI units for the 5 common base units used in Chemistry?
Sample Exercise		
Normal human boo	dy temperature is 37°C.	
What is that temperature in kelvin?		 What is the symbol and meaning for each prefix? a. milli-
Practice Exercise		b. nano-
Make the following temperature		c. deci-
conversions.		d. centi-
a. 77.2K □ °C		3. List the following units in order from largest to
		smallest: mL, cL, µL, L, dL.
b. 120°C □ °F		

4. What is the volume of a paperback book 21	Some conversion factors that you should be
cm tall, 12 cm wide, and 3.5 cm thick?	familiar with involve time:
	1 min =
	60 min =
5. State the difference between weight and mass.	24 hr =
	365 days =
	3600s =
6. Convert 170°C to kelvin.	Sample Problem
7. State the relationship between joules and	How many seconds are in a workday that lasts
calories.	exactly eight hours?
Section 3.3 – Conversion Problems	
A is a ratio of two	Practice Problems
equivalent measurements.	How many minutes are there in exactly 1
Whenever two measurements are	week?
then the ratio equals 1.	
12 in = 1 ft or 1 ft = 12 in	
Ratio form:	How many seconds are in exactly 40 hours?
<u>12 in</u> or <u>1 ft</u>	
1 ft 12 in	
is a way to analyze	How many years is 895600000 s?
and solve problems using the of the	
measurements.	

Convert 1.3 x 10⁴ km to decimeters. Sample Problem Convert 750 dg to grams. Convert 1325 dag to megagrams. Practice Problems Sample Problems (Honors) Convert 0.044 km to meters. Convert 60 g/mL to kg/dL. Convert 6.7 s to milliseconds. Practice Problems (Honors) Convert 90 km/hr to m/s. Convert 4.6 mg to grams. Convert 78 hg/µL to g/L. Sample Problem What is 0.073 cm in micrometers? Sample Problem (Honors) \blacksquare Convert 20 km² to cm². **Practice Problems** Convert 0.227 nm to centimeters.

- Practice Problems (Honors)
- Convert 140 dm³ to hm³.

Convert 50 m/s² to km/hr².

Here is a list of other conversion factors that you need to memorize:

$$1 \text{ cm}^3 =$$

- Sample Problem
- Convert 120 lbs. into kg.
- Practice Problems
- Convert 250 cal into joules.

- Convert 50 cm³ into liters.
- Convert 25 m into feet.
- Section 3.3 Assessment
- What conversion factor would you use to convert between these pairs of units?
 a. minutes to hours
 - b. grams to milligrams
 - c. cubic centimeters to milliliters (regular) cubic decimeters to milliliters (honors)
- 2. Make the following conversions:
 - a. 14.8 g to micrograms
 - b. $3.72 \times 10^{-3} \text{ kg to grams}$

c. 66.3 L to cubic centimeters

- 3. An atom of gold has a mass of 3.271×10^{-23} g. How many atoms of gold are in 5.00 g of gold?
- 4. Convert the following:
 - a. 7.5×10^4 J to kilojoules
 - b. 3.9×10^5 mg to decigrams
 - c. 2.21 x 10⁻⁴ dL to microliters
- 5. (Honors) Light travels at a speed of 3.00 x 10¹⁰ cm/s. What is the speed of light in kilometers per hour?

- Section 3.4 Density
- object to its ______.
- Density =
- depends only on the _____ of a substance, not on the size of the sample.
- The density of a substance generally as its temperature _____.
- is an exception to this rule.
- Sample Problem
- A copper penny has a mass of 3.1 g and a volume of 0.35 cm³. What is the density of copper?

Practice Problems

A bar of silver has a mass of 68.0 g and a volume of 6.48 cm³. What is the density of silver?

A substance has a density of 0.38 g/mL and a volume of 20 mL. What is the mass of the object?

A metal block has a density of 0.66 g/cm³ and has a mass of 2 kg. What is the volume of the block?

- Section 3.4 Assessment
- 1. What determines the density of an object?
- 2. How does density vary with temperature?

3. A weather balloon is inflated to a volume of 2.2 \times 10³ L with 37.4 g of helium. What is the density of helium in grams per liter?

4. A 68 g bar of gold is cut into 3 equal pieces.

How does the density of each piece compare to the density of the original gold bar?

5. A plastic ball with a volume of 19.7 cm³ has a mass of 15.8 g. Would this ball sink or float in a container of gasoline? (Density of gasoline = 0.675 g/cm³)

6. What is the volume, in cubic centimeters, of a sample of cough syrup that has a mass of 50.0 g? The density of cough syrup is 0.950 g/cm³.

7. (Honors) What is the mass, in kilograms, of 14.0 L of gasoline? (Assume that the density of gasoline is 0.680 g/cm³.)