

Facetracking Automated Camera

Experiment (FACE)

CS122A: Fall 2018

Taylor Che

Github:

https://github.com/tche001/CS122A-Final-Project

Table of Contents

Introduction​ 2

Hardware​ 3

Parts List​ 3

Block Diagram​ 3

Pinout​ 4

Software​ 5

Implementation Reflection​ 7

Milestones​ 7

Milestone I​ 7

Milestone II​ 7

Completed components​ 8

Incomplete components​ 8

Youtube Links​ 8

Testing​ 9

Known Bugs​ 10

Resume/Curriculum Vitae (CV) Blurb​ 10

Future work​ 10

References​ 10

Appendix​ 11

1

Introduction

The objective of this project is to develop a face tracking system to keep the user’s face in

the centered on the camera’s frame once they are in range. Additionally, a manual mode was

added for debugging and repositioning of the frame. This project utilizes a Raspberry Pi 3B, as

OpenCV’s Haar cascade algorithm, among other face detection algorithms, are too

computationally intensive for smaller or lower powered microcontrollers. The accompanying

peripherals for this system are two servos, a Raspberry Pi camera, an ultrasonic sensor for

distance detection, and four buttons for manual control.

The execution of the program is as follows: the ultrasonic sensor is polled, detecting if an

object or person is within 20 centimeters of the camera. If the sensor finds an object in range,

the face tracking algorithm is executed, searching for a face. Upon finding a face, the OpenCV

camera output draws a green square around the found face and calculates the difference in the X

and Y coordinates of the center of the camera compared to the center of the generated square.

This difference is used in determining how far to turn and pan the camera to center the face on

the camera’s frame. However, pressing the to the manual movement buttons overrides any

currently running process to move in the inputted direction. The entire program executes until

cancelled in the terminal of the Raspberry Pi.

2

Hardware

Parts List

Part Part # Quantity

Raspberry Pi 3B Raspberry Pi 3B 1

Servo SG-90 2

Raspberry Pi Camera V2.1 1

Ultrasonic Sensor HC-SR04 1

Button Button 4

Block Diagram

3

Pinout

4

Software Flowchart

5

Task Functionality Description:

●​ Setup

​ In this task the GPIO pinouts are defined for usage, the OpenCV video output is

created, the camera is initialized, and the servos move to their initial position.

●​ Poll Distance Sensor

​ The HC-SR04 is polled in this task, but requires time to process the results. First

the sensor is flushed by holding trigger is held high for 0.01 milliseconds and the time

function is tested. Next, a counter is created to prevent a infinite loop created by the

sensor not detecting distance correctly. After, the elapsed time is calculated and the

distance is calculated using the speed of sound divided by 2

●​ Move to Initial Position

​ This function is used to ensure that the motor is in the correct location.

●​ Detect Face

​ This task handles the Haar cascade face tracking, where a frame is read from the

video stream from the camera, an attempt to find the face is made. If a face is found,

OpenCV draws a green rectangle around the face. From the coordinates of the rectangle,

the center of the rectangle is calculated and returned. If a face is not found, the function

skips the previous step. Regardless if a face is found or not, the processed frame is output

to an OpenCV window.

●​ Compare Center of Screen to Center of Face

​ Here the result of detect, the center of the user’s face, is compared to the center of

the camera’s screen in both X and Y directions. The resulting difference is used to

determine the direction in which to turn the camera.

●​ Move Once

​ The difference calculated in the previous task is used to pan or tilt the camera one

step in the determined direction. This uses the move function which sends the

ServoBlaster library which servo to turn, and how far to turn.

●​ Update Initial Position to Current Position

In this task, the current position is set as the new initial position which is passed

to the Move to Initial task to ensure the servo is in the correct position when the next tick

is processed.

●​ Move Once [Up, Down, Left, Right]

​ At every tick, the “pull up” buttons are polled, checking the status of each button.

If an input is detected, the program is interrupted to move the servo one step in the

indicated direction until the button is depressed.

6

Implementation Reflection

In my opinion, my project met the both the milestone goals set at the basic level. Most of

the functionality was implemented successfully, barring a few issues and redesigns. The core

feature of the project, face tracking, works perfectly in most lighting conditions and the servos

do respond as expected, albeit at a slower rate than expected. The tertiary peripherals

functioned correctly as well, the ultrasonic sensor, buttons, and joystick provided the correct

output for the project.

However, the project could have been further optimized. I attempted to speed up the face

tracking algorithm through threading, using knowledge from the GPU class I previously

attended, but I could not figure out how to utilizes the threads on the Raspberry Pi in Python. In

addition to increasing the speed of the program, I would have replaced the buttons with a

different joystick implementation using an ADC to interface with the Pi.

The portion of my project that I liked the most was the Haar cascade detection. I was

intrigued in furthering my understanding of image processing and how object and image

detection functions. Additionally, I have never worked with servos before, so interacting with

simple and accurate motors was interesting to say the least.

Milestones

Milestone I

For this milestone, basic functionality and features were to be built and partially

implemented. The servos were mounted to a breadboard and the servo movements were

programmed with servoblaster. The camera was tested with OpenCV and Haar cascades were

implemented and integrated with movement.

A function of manual mode was attempted using a joystick and USART connecting the

Raspberry Pi and Atmega1284, but did not work due to an issue with the baud rate of the

Raspberry Pi being heavily dependent on its current voltage. The solution to the issue was to

replace the joystick with four buttons. A simpler alternative would have been to use an

MCP3008 ADC to retain the joystick functionality.

Milestone II

The object of this milestone, was to implement live video tracking, a trigger to start the

automated program, and multi face detection. The implementation of live video tracking

improved the framerate of the video playback since, in the previous milestone, the camera would

capture a frame from the camera instead of from a video stream, adding considerable delay due

7

to the camera having to restart for every capture. The trigger for the system is a ultrasonic

distance sensor, constantly polling the distance between the sensor and closest object and

preventing the camera portion of the project from executing. I did not complete the multi face

tracking portion of the project, as I felt it was too ambitious of an objective. To complete that

portion of the project, I did not have the time to commit to reworking the Haar cascade function

to center multiple faces.

Completed components

The majority of the project was completed, as facetracking in OpenCV, a method of

triggering the program was implemented, and servo control was achieved. However, the

methodology has changed for certain parts, such as the joystick portion where buttons were

substituted. The missing parts of the project was multiple object detection and the joystick.

Incomplete components

I did not complete multi face detection that I set out to complete in milestone II, due to

my underestimation of how difficult determining the center of the two faces would be. Currently,

the Harr cascade detects multiple faces, but only tracks the center of a single face. The program

determines the center of the detected face using the vertices of the rectangle generated from the

cascade. From my testing, I found that the function only returns the center value of the first

detected face and does not interact with any following detected face. Given a few more days, I

believe that I could fix this issue by doing an additional pass of the detected faces and averaging

the resulting “centers”.

In addition to not completing the multiple face detection I could not figure out how to

interface USART and SPI between the Atmega 1284 and Raspberry Pi. I tried many

troubleshooting options to fix this issue, but have not been able to figure out how to operate the

Raspberry Pi as a slave, receiving joystick input from the Atmega 1284. From my understanding,

the baudrate of the Raspberry Pi’s GPIO ports varies with voltage, thus with any shift of voltage,

whether it being connecting to wifi or the activation of servos, the baud rate between the two

controllers become unsynchronized and the data sent would become corrupted or lost. My

current solution to this issue is to replace the joystick with 4 pull down buttons, simplifying the

process. However, a future solution would be to supplement the Raspberry Pi with a MCP-3008

ADC, which the RPi lacks, allowing the joystick to directly communicate with the Raspberry Pi.

Integration into the system would take only a few hours as there exists documentation of using

the MCP-3008 specifically for a joystick.

8

Youtube Links

●​ Overview Video:

○​ https://www.youtube.com/watch?v=5MhvC-dVeIQ

●​ Detailed Video:

○​ https://youtu.be/HG4MHmVDAbg

Testing

●​ Camera

​ The camera was tested using the function Raspistill every startup, ensuring that

the camera was detected and correctly attached to the board. An issue in testing I

encountered was the camera’s driver, bcm2835-v4l2, not running during boot. This was

mediated by editing the modules file to include the driver, to ensure it started correctly.

●​ Raspberry Pi

​ The Raspberry Pi was a challenge to set up correctly for this project, as many libraries

needed to be installed. Additionally, my unfamiliarity with setting up virtual environments

made it a challenge to test the installed libraries. This was because certain libraries were

reliant on an out of date version of another, while another library relies on the most up to

date version. After flashing my SD card multiple times, I managed to find a stable setup from

which to base my project from.

●​ Servos

​ The servos were fitted into a mount and tested individually utilizing ServoBlaster. By

creating programs to test pan and tilt functionality simultaneously. The ServoBlaster library

made servo interfacing trivial since the library was robust.

●​ HC-SR04 Ultrasonic Sensor

​ The ultrasonic sensor was challenging to interface, as it operates at 3.3V logic, and

the rest of the project operates at 5V. This was tested by running a specific program

repeatedly whilst changing the values of the voltage divider used to step down the project

until the results of the sensor stopped outputting errors.

●​ Joystick

​ The joystick attached to the Atmega1284 was debugged by attaching LEDs and

assigning values to X and Y input ports and associating them to four LEDS to indicate what

direction that the joystick is currently in. USART was tested on the Raspberry Pi by

connecting the Pi’s Rx and Tx pins together and running a program that sends values

9

https://www.youtube.com/watch?v=5MhvC-dVeIQ
https://youtu.be/HG4MHmVDAbg

through them while polling the Rx pin for received values. Testing the Atmega 1284’s USART

was done by reading values on the second microcontroller and assigning it to the LEDs as

was done earlier.

Known Bugs

●​ HC-SR04 Ultrasonic Sensor

​ The bugs with the ultrasonic sensor were issues with detection as well as

indefinite polling. The ultrasonic sensor would occasionally output a value close to zero

or a value around 2,000. This was probably caused by the program polling the sensor too

fast and not clearing the GPIO pins after every execution, such the rebounding signal is

lost until erroneously received during the next tick. This was somewhat fixed by filtering

out values that are too high or low for use in the program. In addition to this, a counter

was added to break out of the distance function if it counted past 2,000ms, effectively

preventing the program from getting stuck infinitely within the loop. With more time,

completely rewiring the project may result in fewer errors, but due to the inherent low

quality of the sensor itself. Thus, without spending additional money on a better sensor,

the errors are inevitable.

Resume/Curriculum Vitae (CV) Blurb

​ The Facetracking Automated Camera Experiment (FACE) is an automated camera with

the objective is to constantly center the user’s face in the frame of the camera. This is based on

the Raspberry Pi platform in Python utilizing Haar cascade face detection in OpenCV and two

servos to pan and tilt the camera to keep the face centered in the camera’s frame. This project

utilizes a ultrasonic sensor to trigger the automatic face tracking if it detects an object or a user

within 20 centimeters of the sensor. Additionally, four buttons can directly control the servos,

panning or tilting them one degree every second.

Future work

​ In future iterations of the project, this project would feature multi-face tracking as well

as be exported to an FPGA to speed up its processing speed, as it is currently running very

slowly. Additionally, by using a different sensor to trigger the automated portion of the code, it

would further increase the speed of the program. Since this project has few peripherals, encasing

10

the project would simple. This type of project would be useful for the company I did my research

project for, since Raytheon uses servos in many of their projects, as well as object tracking and

detection.

References

OpenCV: Face Detection using Haar Cascades

https://docs.opencv.org/3.4/d7/d8b/tutorial_py_face_detection.html

ServoBlaster: PiBits

https://github.com/richardghirst/PiBits/tree/master/ServoBlaster

​
HC-SR04 Ultrasonic Sensor: modmypi.com

https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi

Using PullUp and PullDown Resistors on the Raspberry Pi:

https://grantwinney.com/using-pullup-and-pulldown-resistors-on-the-raspberry-pi/

Getting Started with Videos: OpenCV

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_gui/py_video_display/py_video_displa

y.html

11

https://docs.opencv.org/3.4/d7/d8b/tutorial_py_face_detection.html
https://github.com/richardghirst/PiBits/tree/master/ServoBlaster
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://grantwinney.com/using-pullup-and-pulldown-resistors-on-the-raspberry-pi/
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_gui/py_video_display/py_video_display.html
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_gui/py_video_display/py_video_display.html

	
	
	
	
	Facetracking Automated Camera Experiment (FACE)
	Table of Contents
	
	Introduction
	Hardware
	Parts List
	
	Block Diagram
	Pinout

	Software Flowchart
	Implementation Reflection
	Milestones
	Milestone I
	Milestone II

	Completed components
	Incomplete components

	Youtube Links
	Testing
	Known Bugs
	Resume/Curriculum Vitae (CV) Blurb
	Future work
	References

