
I.​ A language that is not recursively enumerable: 

 Decidable A problem P is decidable if a Turing machine T that always halt can solve it. (We 
say that P has an effective algorithm.)  

Note that the corresponding language of a decidable problem is recursive.  

Undecidable A problem is undecidable if any Turing machine that halts on all inputs cannot 
solve it.  

Note that the corresponding language of an undecidable problem is non-recursive. 
Complements of Recursive Languages  

Theorem: If L is a recursive language, L is also recursive.  

Proof: Let M be a TM for L that always halt. We can construct another TM M from M for L 
that always halts as follows: 

 

 

Complements of RE Languages  

Theorem: If both a language L and its complement L are RE, L is recursive.  

Proof: Let M1 and M2 be TM for L and L respectively. We can construct a TMM from M1 
and M2 for L that always halt as follows: 

 

A Non-recursive RE Language  

 We are going to give an example of a RE language that is not recursive, i.e., a language L 
that can be accepted by a TM, but there is no TM for L that always halt.  

 Again, we need to make use of the binary encoding of a TM. 



 

 

 

A language that is not recursively enumerable (RE) is a language for which there is no 
Turing machine that can enumerate (list out) all the strings belonging to the language. 

More formally, a language L is not RE if its complement {L} is not recursively 
enumerable. 

Recursively Enumerable (RE) Languages 
A language L is recursively enumerable if there exists a Turing machine M such that for any 
input string w: 

●​ If w in L, M will halt and accept w. 

●​ If w not in L, M will either halt and reject w or run forever (never halt). 

Essentially, for an RE language, we have a recognition procedure. 

 

II. An undecidable problem that is recursively enumerable (RE) is the Halting 
Problem for Turing Machines. 

Halting problem 

Input A machine with Turing and an input string w 

Problem Does the Turing machine complete the w-string computation in a finite number of 
steps? Either yes or no must be the answer 



Proof We will first assume that there is such a Turing machine to solve this problem, and then 
we will demonstrate that it contradicts itself. This Turing machine would be called a Halting 
machine that produces in a finite amount of time a 'yes' or 'no The performance comes as 'yes' 
if the stopping machine finishes in a finite amount of time, otherwise as 'no' 

The Halting Computer block diagram is as follows 

 

 

In addition, as follows, a machine (HM)2 whose input itself is constructed 
 
If (HM)2 halts on input, loop forever, Else, halt 
 
We have a contradiction here. The stopping question is therefore undecidable 
 

 



 

 

III. Undecidable problems about Turing Machines 

 (TMs) are decision problems for which no general algorithm (i.e., no other Turing Machine) 
can be constructed to always produce the correct YES or NO answer in a finite amount of 
time. 

These problems define the fundamental limits of computation 

 
Rice's theorem: 
 
Rice theorem states that any non-trivial semantic property of a language which is recognized 
by a Turing machine is undecidable. A property, P, is the language of all Turing machines that 
satisfy that property. 
 
Formal Definition 
If P is a non-trivial property, and the language holding the property, Lp , is recognized by 
Turing machine M, then Lp = {<M> | L(M) ∈ P} is undecidable. 
 
 
Description and Properties 

●​ Property of languages, P, is simply a set of languages. If any language belongs to P (L 
∈ P), it is said that L satisfies the property P. 

●​ A property is called to be trivial if either it is not satisfied by any recursively 
enumerable languages, or if it is satisfied by all recursively enumerable languages. 

●​ A non-trivial property is satisfied by some recursively enumerable languages and are 
not satisfied by others. Formally speaking, in a non-trivial property, where L ∈ P, both 
the following properties hold: 

o​ Property 1 − There exists Turing Machines, M1 and M2 that recognize the 
same language, i.e. either ( <M1>, <M2> ∈ L ) or ( <M1>,<M2> ∉ L ) 

o​ Property 2 − There exists Turing Machines M1 and M2, where M1 
recognizes the language while M2 does not, i.e. <M1> ∈ L and <M2> ∉ L 

Proof 

Suppose, a property P is non-trivial and φ ∈ P. 
Since, P is non-trivial, at least one language satisfies P, i.e., L(M0) ∈ P , ∋ Turing 
Machine M0. 
Let, w be an input in a particular instant and N is a Turing Machine which follows − 

●​ On input x 
●​ Run M on w 



●​ If M does not accept (or doesn't halt), then do not accept x (or do not halt) 
●​ If M accepts w then run M0 on x. If M0 accepts x, then accept x. 

A function that maps an instance ATM = {<M,w>| M accepts input w} to a N such that 
●​ If M accepts w and N accepts the same language as M0, Then L(M) = L(M0) ∈ p 
●​ If M does not accept w and N accepts φ, Then L(N) = φ ∉ p 

Since ATM is undecidable and it can be reduced to Lp, Lp is also undecidable 
 
Types of Turing machines: 
 
1. Multiple track Turing Machine: ​
  
●​ A k-track Turing machine(for some k>0) has k-tracks and one R/W head 

that reads and writes all of them one by one. 
●​ A k-track Turing Machine can be simulated by a single track Turing 

machine 
​
2. Two-way infinite Tape Turing Machine: ​
  
●​ Infinite tape of two-way infinite tape Turing machine is unbounded in 

both directions left and right. 
●​ Two-way infinite tape Turing machine can be simulated by one-way 

infinite Turing machine(standard Turing machine). 
​
​
3. Multi-tape Turing Machine: ​
  
●​ It has multiple tapes and is controlled by a single head. 
●​ The Multi-tape Turing machine is different from k-track Turing machine 

but expressive power is the same. 
●​ Multi-tape Turing machine can be simulated by single-tape Turing 

machine. 
​
​
4. Multi-tape Multi-head Turing Machine: ​
  
●​ The multi-tape multi-head Turing machine has multiple tapes and 

multiple heads 
●​ Each tape is controlled by a separate head 



●​ Multi-Tape Multi-head Turing machine can be simulated by a standard 
Turing machine. 

​
5. Multi-dimensional Tape Turing Machine: ​
  
●​ It has multi-dimensional tape where the head can move in any direction 

that is left, right, up or down. 
●​ Multi dimensional tape Turing machine can be simulated by 

one-dimensional Turing machine 
​
6. Multi-head Turing Machine: ​
  
●​ A multi-head Turing machine contains two or more heads to read the 

symbols on the same tape. 
●​ In one step all the heads sense the scanned symbols and move or write 

independently. 
●​ Multi-head Turing machine can be simulated by a single head Turing 

machine. 
​
​
7. Non-deterministic Turing Machine: ​
  
●​ A non-deterministic Turing machine has a single, one-way infinite tape. 
●​ For a given state and input symbol has at least one choice to move 

(finite number of choices for the next move), each choice has several 
choices of the path that it might follow for a given input string. 

●​ A non-deterministic Turing machine is equivalent to the deterministic 
Turing machine. 

 
 
 
Extra Notes: 
 
 
undecidable problems about languages. 
 
For an undecidable language, there is no Turing Machine which accepts the language and 
makes a decision for every input string w (TM can make decision for some input string 
though). A decision problem P is called “undecidable” if the language L of all yes instances 



to P is not decidable. Undecidable languages are not recursive languages, but sometimes, 
they may be recursively enumerable languages. 
 

 
 
In the Theory of Computation, problems can be classified into decidable and undecidable 
categories based on whether they can be solved using an algorithm. A decidable 
problem is one for which a solution can be found in a finite amount of time, meaning there 
exists an algorithm that can always provide a correct answer. While an undecidable 
problem is one where no algorithm can be constructed to solve the problem for all possible 
inputs. In this article, we will discuss Decidable and Undecidable problems in detail. 
 
What are Decidable Problems? 
A problem is said to be Decidable if we can always construct a 
corresponding algorithm that can answer the problem correctly. We can intuitively 
understand Decidable issues by considering a simple example. Suppose we are asked to 
compute all the prime numbers in the range of 1000 to 2000. To find the solution to this 
problem, we can easily construct an algorithm that can enumerate all the prime numbers in 
this range. 
Now talking about Decidability in terms of a Turing machine, a problem is said to be a 
Decidable problem if there exists a corresponding Turing machine that halts on every input 
with an answer- yes or no. It is also important to know that these problems are 
termed Turing Decidable since a Turing machine always halts on every input, accepting or 
rejecting it. 
Semi Decidable Problems 
Semi-decidable problems are those for which a Turing machine halts on the input accepted 
by it but it can either halt or loop forever on the input which the Turing Machine rejects. Such 
problems are termed as Turing Recognisable problems. 
Example 
We will now consider some few important Decidable problems: 



●​ Are two regular languages L and M equivalent: We can easily check this by using 
Set Difference operation. L-M =Null and M-L =Null. Hence (L-M) U (M-L) = Null, then 
L, M are equivalent. 

●​ Membership of a CFL: We can always find whether a string exists in a given CFL by 
using an algorithm based on dynamic programming. 

●​ Emptiness of a CFL By checking the production rules of the CFL we can easily state 
whether the language generates any strings or not. 

What are Undecidable Problems? 
The problems for which we can’t construct an algorithm that can answer the problem 
correctly in finite time are termed as Undecidable Problems. These problems may be 
partially decidable but they will never be decidable. That is there will always be a condition 
that will lead the Turing Machine into an infinite loop without providing an answer at all. 
We can understand Undecidable Problems intuitively by considering Fermat’s Theorem, a 
popular Undecidable Problem which states that no three positive integers a, b and c for any 
n>2 can ever satisfy the equation: a^n + b^n = c^n. If we feed this problem to a Turing 
machine to find such a solution which gives a contradiction then a Turing Machine might run 
forever, to find the suitable values of n, a, b and c. But we are always unsure whether a 
contradiction exists or not and hence we term this problem as an Undecidable Problem. 
Example 
These are few important Undecidable Problems: 

●​ Whether a CFG generates all the strings or not: As a Context Free 
Grammar (CFG) generates infinite strings, we can’t ever reach up to the last string 
and hence it is Undecidable. 

●​ Whether two CFG L and M equal: Since we cannot determine all the strings of any 
CFG, we can predict that two CFG are equal or not. 

●​ Ambiguity of CFG: There exist no algorithm which can check whether for the 
ambiguity of a Context Free Language (CFL). We can only check if any particular 
string of the CFL generates two different parse trees then the CFL is ambiguous. 

●​ Is it possible to convert a given ambiguous CFG into corresponding 
non-ambiguous CFL: It is also an Undecidable Problem as there doesn’t exist any 
algorithm for the conversion of an ambiguous CFL to non-ambiguous CFL. 

●​ Is a language Learning which is a CFL, regular: This is an Undecidable Problem 
as we cannot find from the production rules of the CFL whether it is regular or not. 

Undecidability and Reducibility in TOC 

Decidable Problems: 

​
A problem is decidable if we can construct a Turing machine which will halt in finite amount 
of time for every input and give answer as ‘yes’ or ‘no’. A decidable problem has an 
algorithm to determine the answer for a given input. 

Examples 

●​ Equivalence of two regular languages: Given two regular languages, there is an 
algorithm and Turing machine to decide whether two regular languages are equal or 
not. 

●​ Finiteness of regular language: Given a regular language, there is an algorithm 
and Turing machine to decide whether regular language is finite or not. 

https://www.geeksforgeeks.org/what-is-context-free-grammar/
https://www.geeksforgeeks.org/what-is-context-free-grammar/


●​ Emptiness of context free language: Given a context free language, there is an 
algorithm whether CFL is empty or not. 

 

Undecidable Problems: 

​
A problem is undecidable if there is no Turing machine which will always halt in finite amount 
of time to give answer as ‘yes’ or ‘no’. An undecidable problem has no algorithm to 
determine the answer for a given input. 

Examples 

●​ Ambiguity of context-free languages: Given a context-free language, there is no 
Turing machine which will always halt in finite amount of time and give answer 
whether language is ambiguous or not. 

●​ Equivalence of two context-free languages: Given two context-free languages, 
there is no Turing machine which will always halt in finite amount of time and give 
answer whether two context free languages are equal or not. 

●​ Everything or completeness of CFG: Given a CFG and input alphabet, whether 
CFG will generate all possible strings of input alphabet (?*)is undecidable. 

●​ Regularity of CFL, CSL, REC and REC: Given a CFL, CSL, REC or REC, 
determining whether this language is regular is undecidable. 

Note: Two popular undecidable problems are halting problem of TM and PCP (Post 
Correspondence Problem). Semi-decidable Problems 

Undecidability problems: 

For an undecidable language, there is no Turing Machine which accepts the Language and 
makes a decision for every input string w (TM can make decision for Some input string 
though) 

A decision problem P is called "undecidable if the language L of all yes instances to P is not 
decidable recursive languages, but sometimes, they may be recursively enumerable 
languages. 

 

 



Example: 

The halting problem of Turing machine 

The mortality problem 

The mortal matrix problem 

The Post correspondence problem, etc. 

 

Church’s Thesis for Turing Machine 

In 1936, A method named as lambda-calculus was created by Alonzo Church in which the 
Church numerals are well defined, i.e. the encoding of natural numbers. Also in 1936, Turing 
machines (earlier called theoretical model for machines) was created by Alan Turing, that is 
used for manipulating the symbols of string with the help of tape. 

Church Turing Thesis: 

Turing machine is defined as an abstract representation of a computing device such as 
hardware in computers. Alan Turing proposed Logical Computing Machines (LCMs), i.e. 
Turing’s expressions for Turing Machines. This was done to define algorithms properly. So, 
Church made a mechanical method named as ‘M’ for manipulation of strings by using logic 
and mathematics. This method M must pass the following statements: 

●​ Number of instructions in M must be finite. 

●​ Output should be produced after performing finite number of steps. 

●​ It should not be imaginary, i.e. can be made in real life. 

●​ It should not require any complex understanding. 

Using these statements Church proposed a hypothesis called Church’s Turing thesis that 
can be stated as: “The assumption that the intuitive notion of computable functions can be 
identified with partial recursive functions.” 

Or in simple words we can say that “Every computation that can be carried out in the real 
world can be effectively performed by a Turing Machine.” 

In 1930, this statement was first formulated by Alonzo Church and is usually referred to as 
Church’s thesis, or the Church-Turing thesis. However, this hypothesis cannot be proved. 
The recursive functions can be computable after taking following assumptions: 

1.​ Each and every function must be computable. 

2.​ Let ‘F’ be the computable function and after performing some elementary operations 
to ‘F’, it will transform a new function ‘G’ then this function ‘G’ automatically becomes 
the computable function. 

3.​ If any functions that follow above two assumptions must be states as computable 
function. 

 

Describe a universal Turing machine 



A Turing Machine is the mathematical tool equivalent to a digital computer It was Suggested 
by the mathematician Turing in the 30s, and has been since then the Most widely used 
model of computation in computability and complexity theory The model consists of an input 
output relation that the machine computes. The input Is given in binary form on the 
machine’s tape, and the output consists of the contents Of the tape when the machine halts 

What determines how the contents of the tape change is a finite state machine (or FSM, also 
called a finite  automaton) inside the Turing Machine. The FSM is Determined by the number 
of states it has, and the transitions between them Determined by the number of states it has, 
and the transitions between them 

At every step, the current state and the character read on the tape determine the Next state 
the FSM will be in the character that the machine will output on the tape (possibly the one 
read, leaving the contents unchanged), and which direction the Head moves in, left or right 

The problem with Turing Machines is that a different one must be constructed for Every new 
computation to be performed, for every input output relation 

This is why we introduce the notion of a universal turing machine (UTM) which Along with 
the input on the tape, takes in the description of a machine M. The UTM Can go on then to 
simulate M on the rest of the contents of the input tape A universal turing machine can thus 
simulate any other machine 
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