2.3 Exponent Laws 1

Textbook pg 82-84

Write the repeated multiplication for the product of powers below

	Repeated Multiplication	Product as a Power
5 ⁴ x 5 ²	5 x 5 x 5 x 5 X 5 x 5	Consider: How many times is 5 being multiplied?
6 ³ x 6 ⁶	6x6x6 x 6x6x6x6x6x6	
7 ³ x 7 ²		
8 x 8 ⁵		
$a^3 \times a^2$		

What patterns do we notice?

Exponent Law for Products of Powers:

When multiplying powers with the same base, ADD the exponents

$$a^m \times a^n = a^{m+n}$$

The variable a is any integer except 0. The variables m and n are any whole numbers.

Ex.
$$5^6 \times 5^2$$

Ex.
$$a^9 \times a^3$$

	Repeated Multiplication	Quotient As a Power
$5^4 \div 5^2$	<u>5 × 5 × 5 × 5</u> 5 × 5	5 —
	Remember: a number divided by itself = 1!	
$6^6 \div 6^3$	<u>6 × 6 × 6 × 6 × 6 × 6</u>	6—
7 ⁶ ÷ 7 ⁵		
$d^6 \div d^4$		

Challenge:
Use the
Exponent
Law to solve,
then prove it
with
repeated

multiplication.

Ex.
$$4^{6} \cdot 4^{-3}$$

Show the division of powers in the form of repeated multiplication.

What pattern do we notice?

Exponent Law for a Quotient of Powers:

To divide powers with the same base, subtract the exponents.

$$a^m a^n = a^{m-n}$$

mn The variable a is any Integer except 0. The

variables m and n are any whole numbers.

Ex. (-3)
$$^{9\div}$$
 (-3) 2

Ex. $5^{18 \div} 5^4$

Ex. $w^{36 \div} w^{10}$

Practice: Page 86 #1-5, 8, 9

Challenge:

Page 87 #16,17,20, 22b