GIT
Reachability bitmap performance improvement

Name - Shubham Mishra

Email - shivam828787@agmail.com

IRC Nick - shubham828

Location - Ghaziabad, Uttar Pradesh , India , UTC+5:30

Proposal Title - Reachability bitmap performance improvement.

About Me

| am Shubham, | am currently working as a Software Engineer at Microsoft India. | am a
2021 graduate from Delhi University. | am passionate about core engineering and
backend technologies. | love to see beyond all abstractions and how things really work
under the hood. So, | can work from their roots and make things better. | feel
engineering is all about the tradeoffs that we make and | am trying to learn them to
become a better Engineer.

| am passionate about open source technologies and have quite a good amount of
contribution to them, | participated in GSoC 2020 with KDE, did Internship with Linux
Foundation - HDV, Season of KDE - report, and | am doing voluntary contributions to
VSperf, BoostC++ and some other open-source projects.

Motivation for Proposal

| have been using Git for the last 3 years now, and | always find myself curious about
how it manages a lot of files seamlessly to make developer collaboration so smooth.

mailto:shivam828787@gmail.com
https://summerofcode.withgoogle.com/archive/2020/projects/6473982317953024
https://wiki.lfnetworking.org/display/LN/HDV
https://community.kde.org/SoK/2020/StatusReport/Shubham

| was listening to one of Derrick Stolee's podcasts, where | felt git contributors really do
cool stuff, So | also wanted to be one. By becoming a regular contributor of git, | can
give my contribution back to it as well as | can show off it to my friends :) . | love to study
advanced data structures and Algorithms that's the reason | chose a bitmap related
project. | will get a chance to learn different compression algorithms and analyze their
performance.

Project Abstract

During repository clones, the Git server needs to find out all the objects which clients do
not have and need to be sent to the client.

To make the process faster, Git uses bitmaps to quickly find all the related objects from
an object. Bitmap approach is a performance optimization over the legacy "Counting
Objects" - the process in which the git server used to iterate through the graph from
branch tips to the beginning of history to list down all objects that need to be sent.

bitmap made reachability faster but uncompressed bitmaps can cost a lot of extra
storage. Git uses a C ported version of EWWAHBoolArray to compress bitmaps which get
stored in the ".bitmap" file with the same prefix "sha" as ".pack" and ".idx".

The aim of the project is to design a performance test suite as well as do the necessary
changes to improve bitmap performance by trying out a new compression scheme that

can make read operations along with other common operations like intersect, union and
negate faster.

Me & Git:

Microproject:

| worked on the microproject "Avoid pipes in git related commands in test scripts", the
patches for it has been merged to master now
e https://public-inbox.org/qit/20220224054720.23996-3-shivam828787@gmail.com
e https://public-inbox.org/qit/20220224054720.23996-3-shivam828787 @gmail.co/

| run a pattern matching grep to find all git commands on LHS of pipes and fix all of
them from file t001-t050.

As an outcome of this process, | got to learn the code review process at git work, which
is quite cool and different from other organization's | contributed to before.

https://github.com/lemire/EWAHBoolArray
https://public-inbox.org/git/20220224054720.23996-3-shivam828787@gmail.com/
https://public-inbox.org/git/20220224054720.23996-3-shivam828787@gmail.com/

| learned about building source code, running tests, using email to send patches,
communicating with reviewers and sending the next patch version process.

Current understanding:

e | have gone through git internals, and | well understood about the pack files as
well as the difference between git objects (tree, blob, commit).

e | have gone through some documentations - "MyFirstObjectWalk", etc. it was a
good hands-on to get some glimpse of general object related tasks.

e | understand how bitmap works in general, | have got some idea how EWAH
compression works and also | have gone through the research paper on roaring
run.

e | played with commands of pack-object - "git pack-objects dir --progress <
obj_lists.txt" and read the code of related files "pack-bitmap.c" and parts of
"pack-object.c"

e | checked the general documentation of Croaring as one of the potential
alternatives to EWAH.

Execution plan:

| am interested in keeping my primary focus on "building a performance suite and
improving bitmaps performance by finding a better compression scheme" project and if |
finish this early or even after the GSoC timeline, | will be happy to contribute to other
tasks too.

From the idea page, | got some sense that decompressing a bitmap for reading bits or
doing operations like intersection, negation and union makes them slow and can be
improved.

Roaring + Run was the suggested alternative to explore. It divides the data into chunks
of 216, which allows you to check for the presence of any one value faster. As a result,
Roaring can compute many operations much faster than run-length-encoded formats
like WAH, EWAH, Concise. After getting a high level understanding of algorithms, |
explored a bit of the Croaring library which is a C implementation of roaring bitmap. It
provides a lot of useful functions to do all general operations (find cardinality, and, or,
copy, equals). Which | think we will be using in the "pack-bitmap.c" and
"pack-bitmap-write.c" files as a replacement of ewah/bitmap functions. | do not have
enough knowledge yet to figure out how compatible croaring is with the current .bitmap
format. We might need to make changes in the current .bitmap format accordingly.

https://github.com/RoaringBitmap/CRoaring
https://github.com/RoaringBitmap/CRoaring

Steps | will be following to accomplish the task-

1.

Get a better understanding of bitmap related functionalities/ codebase, EWAH,
techniques.

. Build a performance suite to validate our assumption on using different

compression schemes can make bitmap faster. We can create benchmarks for
reading (decompression), writing (compression) and memory to know if new
techniques are really useful or not.

| will investigate and find out if we need a new .bitmap format, keeping in mind
some of the future projects related to bitmap.

Try to build out an initial draft version implementing only minimal required core
changes, | will try to get a review on it from a wider audience (including mentors).
Make changes according to the comment and repeat the review process.

If performance improves, | will be writing the rest of the required code changes to
use the Croaring including perf tests for them.

Until this time, | will also get a good understanding of the bitmap related projects,
so if we will be able to make good progress on roaring+run. | can start picking
other subprojects too like 'table of contents' for the .bitmap file where past work -
https://lore.kernel.org/git/YNuiM8TR5evSeNsN@nand.local/ can act as a good
reference to me or/and 'append-only bitmap generation' subproject.

| feel for any mentoring program, Communication is the key to success. | will be utilizing
the community bonding periods to figure out a process for being in regular touch with
mentors, which is essential to make sure | am going in the right direction.

Timeline

| am available to dedicate around 30-35 hours every week to the project.

Community bonding periods -

1.

2.
3.
4.

Exploring code base mostly related to bitmaps - pack-bitmap-writer.c, midx.c,
pack-objects.c.

research on other bitmap compression techniques

reading technical documents

interacting with mentors to understand them and project in more detail.

12 June - 25 July:

1.
2.

3.

Write performance test suite for bitmap

Finding out if we need a new a .bitmap format, it might adjust rest of the schedule
accordingly.

Writing the first version with the new compression technique

https://lore.kernel.org/git/YNuiM8TR5evSeNsN@nand.local/

25 July - 4 sept
1. Get the initial version reviewed by reviewers and make changes accordingly.
2. if tests result well, extending the above functionality to completely move to a new
technique.
3. start picking up other tasks if time left

Sept 5 - Sept 12
1. 1 will make sure to get all changes merged before this week including tests
2. if not, make a decision with mentor on extending the project

Other proposals
No, This is the only proposal | am making for GSoC 2022.

Blog

| want to make blog writing a habit so | planned to publish biweekly blogs at
https://shubham828.github.io/ during this GSoC and after that. This is something |
started during my last GSoC too but unfortunately couldn't continue post-gsoc. This
GSoC gives me another opportunity to become a regular blogger.

After GSoC

| would love to be a regular contributor of Git. After GSoC, | can pick any left out
subprojects of bitmap reachability and | would also be happy to extend my knowledge
beyond bitmaps to learn and contribute to other parts of git too.

	GIT
	Reachability bitmap performance improvement
	Microproject:
	Current understanding:

