
 [The updated model can be found here:
https://docs.google.com/a/noironetworks.com/presentation/d/1Nn1HjghAvk2RTPwvltSrnCUJkid
WKWY2ckU7OYAVNpo/edit?pli=1#slide=id.g3831233f8_2912]

Group-based Policy Abstractions for Neutron

Collaborators

Kyle Mestery, Michael Smith, Mike
Dvorkin, Mike Cohen, Sumit
Naiksatam - Cisco

Anees Shaikh, Mohammad Banikazemi, Ryan
Moats - IBM

Rudra Rugge, Harshad Nakil - Juniper Chris Wright - Redhat

Ronak Shah, Scott Drennan, Dimitri
Stiliadis - Nuage Networks

Nils Swart, Derick Winkworth - Plexxi

Uri Elzur - Intel Stephen Wong - Midokura

Keith Burns - Noiro Networks Kanzhe Jiang, Rob Sherwood, Big Switch
Networks

Prasad Vellanki, Subra Ongole,
Hemanth Ravi - One Convergence

This blueprint consolidates proposals for extending OpenStack Networking with policy and
connectivity abstractions that enable significantly more simplified and application-oriented
interfaces than with the current Neutron API model. While the current API derives its model
from existing legacy network constructs, such as ports, subnets, routers, etc., the proposed
model aims for a highly abstracted interface for application developers to express desired
connectivity of application components, and high-level policies governing that connectivity.
Given the wide variety of technologies available for cloud networking, this model avoids
imposing constraints on the underlying implementation that prescribe a particular approach.

This blueprint represents the merger of two similar proposals from Cisco and IBM tackling this
group concept. Where there are differences in the various proposals, the different approaches
have been described. In spite of these differences, the different approaches can express
equivalent application topologies and connectivity policies to a large extent. Most importantly,
they share the common goal of an application-centric, policy-oriented view of OpenStack
Networking.

https://docs.google.com/a/noironetworks.com/presentation/d/1Nn1HjghAvk2RTPwvltSrnCUJkidWKWY2ckU7OYAVNpo/edit?pli=1#slide=id.g3831233f8_2912
https://docs.google.com/a/noironetworks.com/presentation/d/1Nn1HjghAvk2RTPwvltSrnCUJkidWKWY2ckU7OYAVNpo/edit?pli=1#slide=id.g3831233f8_2912

Scope:

This blueprint proposes policy and grouping abstractions for Neutron that will allow for easier
consumption of the networking resources by separate organizations and management systems.

Implementation Overview:

The policy framework described in this blueprint extends the current Neutron model with the
notion of policies that can be applied to communication between groups of endpoints. As users
look beyond basic connectivity, richer network services and network properties are naturally
expressed as as policies. Examples include middlebox traversal (service chaining), QoS,
path properties, access control, etc. This proposal suggests a model that allows application
administrators to express their networking requirements using group and policy abstractions,
with the specifics of which policies are supported and how they are implemented, left to the
underlying implementation.

The main advantage of the extensions described in this blueprint is that they allow for an
interface to Neutron which is more application-centric than the existing Neutron APIs. For
example, the current Neutron API is focused on very network-centric constructs: ports,
networks, subnets, routers, and security groups. In the context of networking, these make
complete sense. But in the context of cloud applications, these are more cumbersome than
needed. Application developers think in different terms -- the policy and group abstractions are
designed to allow for the flexibility that an application developer may want when programming
something like Neutron.

Additionally, the abstractions described here were designed to offer a large amount of flexibility
to plugin authors. Plugins may choose to map groups and policies to existing network-centric
primitives. However, if the plugin supports a new form of SDN technology, or a higher level of
abstraction, they may leverage the additional flexibility in the model to implement network policy
in any way they see fit as well.

The goal of these API extensions is that they become the main interface to Neutron for those
deploying applications by providing a simpler interface in which to consume Neutron resources.

Terminology

The following terminology is used in this document to describe the key concepts and objects

that the Connectivity Group Extension work brings into the Neutron fold.

Entity Description

Connectivity Group Collection of endpoints with a common policy.

Policy Set of Policy Rule objects describing policy.
Policies may be applied between groups, or
alternatively, applied to a single group using
provide / consume relations. (These
alternatives are explained further below).

Policy Rule Specific <classifier, action> pair, part of a
policy.

In many IT environments, there may be multiple administrative domains that control the
configuration of the infrastructure. This is particularly true in the typical Enterprise where the
network infrastructure is often managed by a separate organization from compute and storage.
Often the networking infrastructure resources need to be consumed by the organization
deploying applications. This consumption of network resources should allow elasticity and ease
of consumption while providing the ability to maintain organizational ownership and control if
necessary. The current Neutron networking model attaches application VMs to a logical port.
That logical port supports a single VM instance and requires the specification of many desired
extensions such as security group membership directly on the logical port. In order to allow for
easier consumption of the networking resources by the application and compute organizations,
a simple abstraction is needed to present a single elastic entity and hide the details of the
underlying network detailed configuration. This blueprint is proposing a Connectivity Group that
will contain the configuration of the networking resources such as security group membership,
network, and all of the extensions. The application team would deploy these Connectivity
Groups as simple named entities. It is also useful to allow the ability for the application team to
specify relationships between Connectivity Groups. These relationships would also be named
entities provided by the networking organization. These named entities are referred to as
policies. The relationships allow applications to dynamically configure the networking
infrastructure without being intimately aware of the underlying configuration.

Endpoints are placed into Connectivity Groups for the purpose of policy application. This is
done by user configuration. An Endpoint is typically an individual MAC and/or IP address
belonging to a vNic/Nic but may also be a group of VMs such as all VMs belonging to a
particular subnet. It should be noted that a single VM may be viewed as multiple Endpoints if it

has multiple vNICs. Additionally, for the ease of an initial implementation, a Connectivity Group
may be defined by the existing Neutron network concept. Defining a group of VMs as an
Endpoint is particularly useful for representing an external network like the public Internet or an
endpoint representing all other traffic destinations.

Policy definition:

The policy determines connectivity between groups and how the traffic will be treated. It
contains a classifier that contains a description of the network traffic to which the policy applies.
The classifier is expressed as a list of L4 ports and protocol. The resulting action taken on
traffic matching the classifier may be in the form of security actions such as permit / deny, QoS
actions, and/or redirection to a service chain. In the future, this classifier may be easily
extended to cover additional behaviors as well.

Two different approaches to Policy definition:

The two blueprints that have been consolidated to form this blueprint differed slightly in the way
that the policy is expressed and applied between the groups.

Policies applied as a group API

In the first approach, the policy is presented by the group as a service to be consumed by other
groups. In other words, the group is providing the service defined by the policy. A given group

may provide one or more policies just as it may provide one or more services.

Policy as a Group API

The policy may have constraints defined on what groups may consume the service but for the
most part, the provider of the service is unaware of who is consuming the service. This is very
similar to how an application exposes a northbound API. For example, an application server
may expose a REST API as the method for its application function to be consumed. The
consumers are also unaware of any services that are defined in the policy. For instance, a
service may require that a loadbalancer and firewall be inserted. This would be defined within a
service chain inside the policy and hidden to the consumer.

Consuming Group Policies

The consumer of the service is also largely unaware of who exactly is providing a service. For
instance, a single policy may be provided by more than 1 group and each group consists of
many endpoints. Again, this is very similar to how applications operate today. By modeling the
policy as a provided service, this model allows the service to be defined in a single policy that
can be shared across many consuming groups. It also allows the application developer to
define the service provided by his application independent of the exact method of deployment.
This allows others to more easily reuse application components within their multi-tier
applications.

Policies applied between groups

In the second approach, the policy is defined between a pair of groups and provides an intuitive
way to express allowed communication, as well as properties of that communication. as an
explicit connectivity policy between a pair of groups. The policy content is identical to the
application-centric policy approach, i.e., including network service insertion, QoS or reliability
goals, etc. This view of policy takes is a more explicit way of viewing relationships between
groups. Once a policy is defined and named, it can then be applied between multiple sets of
groups. In this model, the exact groups that are providing a service and consuming a service
are known explicitly whereas in the above approach, the exact groups are implicit based on
producer and consumer relationships.

Use Cases:

3-tier Application with Security Policies

A specific use case example for such the Connectivity Groups abstraction is a 3-tier
Web/App/Database application. In this use case, a tenant creates a Connectivity Group for
each tier. Within each Connectivity Group, the network configuration is specified such as the
network and security group membership as well as other network configurations. Such a
configuration will allow the Web tier to communicate with the App tier but not the Database tier.
It does this by specifying security groups and security group rules within the Connectivity
Groups.

The following diagrams show how this use case maps into the terminology represented here.

The existing Neutron constructs such as Networks, Routers, and Subnets can still be used
directly by the user if so desired. In this case, the new constructs introduced by this blueprint
will be rendered onto the existing constructs. The diagram below shows how these new
constructs could be mapped into existing Neutron objects. This is used to show a correlation,
but is not required by the underlying implementation of the APIs.

Tiered application with service insertion / chaining

Consider another example, but with policies applied between groups to specify that certain
traffic types should pass through a defined set of network services. The diagram below
illustrates this use case.

In this example groups have been defined corresponding to external or public Internet
endpoints, application cluster, and database cluster. Policies consisting of rules containing
<classifier, action> pairs have been defined between groups. In this example, Web traffic from
the external network must pass through a firewall and ADC (load balancer or application
delivery controller) before reaching the application cluster. Similarly, there is a policy for traffic
destined for the database tier which also requires processing by another firewall. In this
example the service chains have been abstracted to simple names.

Mapping to existing Neutron objects is straightforward here. These groups could be mapped to
virtual networks and subnets, and the individual services in each chain can be configured using
existing Neutron service configuration models (e.g., FWaaS and LBaaS). As mentioned above,

however, such a mapping is allowed, but not required, by this model.

Data Model Changes:

We expect some new data model changes to be introduced. The following diagram shows the
data model changes required.

Neutron Object Model (grey boxes already exist)

Configuration variables:

The Connectivity Group Extension APIs do not introduce any new configuration variables.

API's:

The Connectivity Group Extension introduces new objects into the Neutron Object Model. These
new objects will have appropriate APIs, listed below.

Object Verb URI

Endpoint GET /v1.0/endpoints/

Endpoint GET /v1.0/endpoints/endpoint_id

Endpoint POST /v1.0/endpoints

Endpoint PUT /v1.0/endpoints/endpoint_id

Endpoint DELETE /v1.0/endpoints/endpoint_id

Connectivity Group GET /v1.0/connectivity_groups/

Connectivity Group GET /v1.0/connectivity_groups/connectivity_group_

id

Connectivity Group POST /v1.0/connectivity_groups

Connectivity Group PUT /v1.0/connectivity_groups/connectivity_group_
id

Connectivity Group DELETE /v1.0/connectivity_groups/connectivity_group_
id

Policy GET /v1.0/policies/

Policy GET /v1.0/policies/policy_id

Policy POST /v1.0/policies

Policy PUT /v1.0/policies/policy_id

Policy DELETE /v1.0/policies/policy_id

Policy Rule GET /v1.0/policy_rules/

Policy Rule GET /v1.0/policy_rules/policy_rule_id

Policy Rule POST /v1.0/policy_rules

Policy Rule PUT /v1.0/policy_rules/policy_id

Policy Rule DELETE /v1.0/policy_rules/policy_id

The new API will return error messages for failures occurring during API operations. Standard
4xx HTTP error codes are used as return values to indicate problems with the request sent by
the client.

Error Description

400 Bad Request

401 Unauthorized

403 Forbidden

404 Not Found

409 Conflict

413 Over Limit

422 Immutable

500 Internal Server Error

503 Service Unavailable

Some example API calls are shown below:

Example 1. Create Policy Rule: JSON Request

POST v1.0/policy_rules.json

Content-Type: application/json

Accept: application/json

{

​ "name": "web-rule",

​ "direction": "ingress",

​ "port_range_min": 80,

​ "port_range_max": 80,

​ "protocol": "tcp"

​ "ethertype": "IPv4"

}

Example 2. Create Policy Rule: JSON Response

"status": "201"

"content-length": "153"

"content-type": "application/json;

{

​ "name": "web-rule",

​ "id": "850d3f42-f76a-4f8b-b1cf-5836fc0be940",

​ "direction": "ingress",

​ "port_range_min": 80,

​ "port_range_max": 80,

​ "protocol": "tcp"

​ "ethertype": "IPv4",

​ “policy_ids”: [],

​ "tenant_id": "f667b69e4d6749749ef3bcba7351d9ce"

}

Example 3. Create Policy: JSON Request

POST v1.0/policy.json

Content-Type: application/json

Accept: application/json

{

​ "name": "web-policy",

​ "policy_rule_ids": ["web-rule"]

}

Example 4. Create Policy: JSON Response

"status": "201"

"content-length": "153"

"content-type": "application/json;

{

​ "name": "web-policy",

​ "id": "940d3f42-f76a-4f8b-b1cf-5836fc0be940",

​ "policy_rule_ids": ["web-rule"],

​ "tenant_id": "f667b69e4d6749749ef3bcba7351d9ce"

}

Open Source Reference Implementation

The Group-based Policy Abstraction APIs will be implemented in an Open Source plugin to
provide a reference implementation for other plugins to follow, as well as to ensure their
adoption. We intend for these APIs to become core Neutron APIs, so ensuring they are a part of
an Open Source plugin is the first step towards making this happen. We will implement these in
the Modular Layer 2 (ML2) plugin, as in Icehouse the Open vSwitch and Linuxbridge plugins are
being deprecated.

Plugin Interface:

To utilize the Connectivity Group Extension APIs, plugins will need to be modified to support
these APIs. Plugins that do not support these extension APIs will not require any modification.

Dependencies:

No additional dependencies are required to support the new APIs.

CLI Requirements:

The following CLI commands will be added to the neutron client to support the CGE API
extensions:

●​ Endpoints
○​ neutron endpoint-create
○​ neutron endpoint-delete
○​ neutron endpoint-update
○​ neutron endpoint-list
○​ neutron endpoint-show

●​ Connectivity Groups
○​ neutron connectivitygroup-create
○​ neutron connectivitygroup-delete
○​ neutron connectivitygroup-update
○​ neutron connectivitygroup-list
○​ neutron connectivitygroup-show

●​ policies
○​ neutron policy-create
○​ neutron policy-delete
○​ neutron policy-update
○​ neutron policy-list
○​ neutron policy-show

●​ policy rules
○​ neutron policy-rule-create
○​ neutron policy-rule-delete
○​ neutron policy-rule-update
○​ neutron policy-rule-list
○​ neutron policy-rule-show

Horizon Requirements:

We would like to add support for these new APIs into Horizon. This would allow administrators
the option of utilizing Horizon interface to configure Connectivity Groups, Endpoints, and
policies.

Usage Examples:

The intent of the Connectivity Group API extensions is to simplify usage of Neutron from an
application point of view. Here we present two use cases.

Use Case 1:

 An example of using the new APIs is shown below. We will refer to the following picture of a
typical 3-tier web application deployment for an example of how this will look. This is shown
below.

In the example above, the application will first create policy rules:

neutron policy-rule-create web-rule --direction ingress --protocol tcp --port 80

neutron policy-rule-create all-rule --direction ingress --protocol tcp --port all

neutron policy-rule-create db-rule --direction ingress --protocol tcp --port 3306

Next, the application will create policies:

neutron policy-create web --policy-rule web-rule

neutron policy-create app --policy-rule all-rule

neutron policy-create db --policy-rule db-rule

Next, Connectivity Groups are created, specifying how things are connected:

neutron connectivitygroup-create DB --provide db

neutron connectivitygroup-create APP --provide app --consume db

neutron connectivitygroup-create WEB --provide web --consume app

neutron connectivitygroup-create OUTSIDE --consume web

Endpoints will be created implicitly when Nova creates VMs. However, the Connectivity Group
API allows for the creation, deletion and update of Endpoints if the application itself desires to
perform those operations.

The above will implicitly create the appropriate Neutron constructs and build a compatible
network for the 3-tier application to use, utilizing the Connectivity Group Extension constructs.
Further, the application will not need to understand or know about network specifics such as
ports, networks, or subnets. The Connectivity Group Extension API will allow the application to
express it’s connectivity desires in more natural terms.

Use Case 2:

In the second usage example, consider the tiered application with service insertion / chaining
case discussed earlier:

In the example above, the application will first create the Connectivity Groups and Policy Rules:

neutron connectivitygroup-create Inet --external

neutron connectivitygroup-create App

neutron connectivitygroup-create DB

Policy Rules are defined by specifying the traffic classifier and the action to be performed:

neutron policy-rule-create policyrule-web --protocol tcp --port 80,443 --action chain1

neutron policy-rule-create policyrule-db --protocol tcp --port 3306 --action chain2

Policies are then created by specifying the source and destination Connectivity Groups (policy

endpoints) and the Policy Rules for each policy.

neutron policy-create policy-web-ingress --policy-endpoints Inet,App --policy-rule
policyrule-web

neutron policy-create policy-db-ingress --policy-endpoint App,DB --policy-rule
policyrule-db

Similar to the first use case the Endpoints will be created implicitly when Neutron creates VMs.
and the Connectivity Group API allows for the creation, deletion and update of Endpoints if the
application itself desires to perform those operations.

The service insertion / service chaining action type can be further defined as a named sequence
of identifiers that correspond to virtual appliances and their associated configurations. The
details of each action type will be further defined through the course of developing the
Group-based policy extension.

The above will implicitly create the appropriate Neutron constructs and build a compatible
network for the 3-tier application to use, utilizing the Connectivity Group Extension constructs.

Test Cases:

Tempest tests will be added to handle the new extension APIs proposed here. These will be run
with the ML2 plugin and the Open vSwitch MechanismDriver.

More detailed design document starting from next page.

Detailed Design

Here we try to harden the design and pave the way for a prototype implementation.

The design is currently being reworked here:
https://docs.google.com/a/noironetworks.com/presentation/d/1Nn1HjghAvk2RTPwvltSrnCUJkid
WKWY2ckU7OYAVNpo/edit#slide=id.g1d6aae2d8_5673

Defining Attributes

New resources:

group
 endpoints

policy_rule
 classifier
 list of actions

policy
 groups
 policy_rules

https://docs.google.com/a/noironetworks.com/presentation/d/1Nn1HjghAvk2RTPwvltSrnCUJkidWKWY2ckU7OYAVNpo/edit#slide=id.g1d6aae2d8_5673
https://docs.google.com/a/noironetworks.com/presentation/d/1Nn1HjghAvk2RTPwvltSrnCUJkidWKWY2ckU7OYAVNpo/edit#slide=id.g1d6aae2d8_5673

Taxonomy

https://docs.google.com/drawings/d/1HYGUSnxcx_8wkCAwE4Wtv3a30JstOBPyuknf7UnJMp0/
edit?usp=sharing

Endpoints and Groups

Endpoints are first class Neutron objects and a group is made of one or more endpoints. It is
possible (whether desirable/required or not is to be discussed) that endpoints of a group can be
of different types including ports and networks. Note that an endpoint can be a network.

Group Attributes:

https://docs.google.com/drawings/d/1HYGUSnxcx_8wkCAwE4Wtv3a30JstOBPyuknf7UnJMp0/edit?usp=sharing
https://docs.google.com/drawings/d/1HYGUSnxcx_8wkCAwE4Wtv3a30JstOBPyuknf7UnJMp0/edit?usp=sharing

Attribute Type Required CRUD Default Validation
Constraints

Notes

id uuid-str N/A R generated N/A

name String No CRU None N/A

tenant_id uuid-str No CR from Auth.
token

N/A

members List
(uuid-str)

Yes CRU N/A N/A list of
endpoints

Endpoint Attributes:

Attribute Type Required CRUD Default Validation
Constraints

Notes

id uuid-str N/A R generated N/A

name String No CRU None N/A

tenant_id uuid-str No CR from Auth.
token

N/A

type String No CR “network” N/A Currently
either
“port” or
“network”

reference

uuid-str Yes CRU N/A N/A Currently
required

Policies

Policy Attributes:

Attribute Type Required CRUD Default Validation
Constraints

Notes

id uuid-str N/A R generated N/A

name String No CRU None N/A

tenant_id uuid-str No CR from Auth.
token

N/A

src_group List
(uuid-str)

Yes CR N/A N/A

dst_group List
(uuid-str)

Yes CR N/A N/A

bidirectional Boolean No CR False N/A

policy_rules List
(uuid-str)

Yes CRU N/A N/A

Policy Rules Attributes:

Attribute Type Required CRUD Default Validation
Constraints

Notes

id uuid-str N/A R generated N/A

name String No CRU None N/A

tenant_id uuid-str No CR from Auth.
token

N/A

classifier uuid-str Yes CR N/A N/A

priority (is
this
needed?)

integer Yes CR 0 To establish
the
ordering of
policy rules
of a policy

action_list List (dict) Yes CRU N/A N/A list of
dictionary
describing
{action_type
: action}

Classifier Attributes:

Attribute Type Required CRUD Default Validation
Constraints

Notes

id uuid-str N/A R generated N/A

name String No CRU None N/A

tenant_id uuid-str No CR from Auth.
token

N/A

type String No CR N/A N/A “unicast”
and
“broadcast”

ports List(dict) No CR None N/A Sub-ranges
of ports
[{ "min":
"80",
“max": "82"}
]

protocol String No CR None N/A

Actions:

TODO: a method to query what actions are supported, and functional definitions; methods to
update various action values (differs action value types for different action types)

Actions are formatted as a list of dictionary: {action_type: ‘<action-type-string>’, action_value:
<action-specific-definition>}

All plugins are required to support the action type ‘security’ as defined below. All other action
types are optional.

Action type == “security”

Attribute Type Required Default Value(s)

action_type String Yes N/A must be
‘security’

action_value String Yes ‘deny’ Currently
either
“allow” or
“drop”

By default, if no ‘security’ action is provided, the default security action of a classifier match is
‘deny’ (packets are dropped)

Conflict Resolution for ‘security’ action type

There are various scenarios where the ‘security’ action values can cause conflict; for example, if
a policy contains multiple policy-rules, and a packet matches on multiple classifiers on those
rules, each of those matching rules can have ‘security’ action which may contain either ‘allow’ or
‘deny’ values. In case of conflict - that is, matches resulting in both the ‘allow’ and ‘deny’ actions
- the ‘allow’ action will be taken

Optional action types

The following two action types were mentioned in this document. Support for these action types
is optional. Application can query the list of supported action types via TODO method

An example of action type == “qos”

Attribute Type Required Default Value(s)

action_type String Yes N/A must be
‘qos’

action_value List (dict) Yes N/A a ‘qos_type’
to value
tuple; for
example,
{‘qos_class’
,
{‘assured-fo
rwarding’,
‘class-1-me
d-drop’}
and/or
‘{‘rate-limit’,
{‘tc-rate’:val,
‘tc-latency’:
val,
‘tc-burst’:val
}

An example of action type == “redirect”

'redirect' action is used to forward or replicate traffic to other destinations - destination can be
another endpoint group, a service chain, a port, or a network. Note that 'redirect' action type can
be used with other forwarding related action type such as 'security'; therefore, it is entirely
possible that one can specify {'security':'deny'} and still do {'redirect':{'uuid-1', 'uuid-2'...}. And in
case of {‘security’:’allow’}, traffic is sent to both the intended endpoint group as well as the
redirect destination. Note that the destination specified on the list CANNOT be the

endpoint-group who provides this policy. Also, in case of destination being another
endpoint-group, the policy of this new destination endpoint-group will still be applied"

Attribute Type Required Default Value(s)

action_type String Yes N/A must be
‘redirect’

action_value List (uuid-str) Yes N/A can be
another
endpoint
group, or
non-group
object such
as service
chain

Heat template in YAML

heat_template_version: 2014-01-14

description: >

 YAML template to demonstrate Group Policy resources

EndPoints

endpoint_1:

 type: OS::Neutron::Endpoint

 properties:

 name: endpoint_1

 type: OS::Neutron::Net

 reference: "f31739b0-7d53-11e3-baa7-0800200c9a66"

endpoint_2:

 type: OS::Neutron:Endpoint

 properties:

 name: endpoint_2

 type: OS::Neutron::Net

 reference: "f31739b0-7d53-11e3-baa7-0800200c9a66"

Groups

l_group:

 type: OS:Neutron::ConnectivityGroup

 properties:

 name: l_group

 members: [{ get_resource: endpoint_1 }]

r_group:

 type: OS::Neutron::ConnectivityGroup

 properties:

 name: r_group

 members: [{ get_resource: endpoint_2 }]

Classifier

web_classifier:

 type: OS::Neutron::Classifier

 properties:

 name: web_classifier

 type: unicast

 ports: [{ min: 80, max: 82 }]

 protocol: tcp

Policy Rule

policy_rule:

 type: OS::Neutron::PolicyRule

 properties:

 name: policy_rule

 classifier: { get_resource: web_classifier }

 action_list: [{ "action_type" : "security", "action_value" : "drop" }]

Policy

policy_1:

 type: OS::Neutron::Policy

 properties:

 name: policy_1

 src_group: [{ get_resource: l_group }]

 dst_group: [{ get_resource: r_group }]

 bidirectional: yes

 policy_rules: [{ get_resource: policy_rule }]

	Group-based Policy Abstractions for Neutron
	Scope:
	Implementation Overview:
	Terminology
	Use Cases:

	
	
	Detailed Design
	Defining Attributes
	
	
	Taxonomy
	
	Endpoints and Groups
	
	Actions:
	Heat template in YAML

