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Overview
1. Foundation Models: The chapter begins with an exploration of how contemporary

approaches in machine learning lean towards the development of centralized
foundation models. The section elaborates the merits and drawbacks of such a
paradigm.

2. Leveraging Computation: This section introduces the reader to “the bitter lesson".
The focus for this section is comparing historical advancements achieved through the
utilization of human-engineered heuristics with those accomplished by capitalizing
on additional computation. This is followed by a discussion on current trends in the
“compute optimal training” of machine learning models. This section concludes with
an introduction to and the implications of scaling laws and the scaling hypothesis.

3. Capabilities: This section builds upon the previously introduced trends and
paradigms, and extrapolates these to predict potential capabilities of future artificial
intelligence (AI) models. There is a discussion around the merits of using the term
capabilities instead of intelligence. This is followed by introducing slightly more
detailed frameworks for different possible tiers and categorizations of artificial
general intelligence (AGI). Moreover, the concept of (t,n)-AGI is introduced. This
outlook allows a straightforward comparison to humans, while also establishing a
measurable continuous spectrum of capabilities. Overall the aim is to help establish a
more concrete definition of AGI capabilities for the reader.

4. Threat Models: Understanding capability thresholds paves the way for a discussion
into the concept of emergence. This is then followed by an examination of qualities
that machine intelligences might possess. These qualities potentially indicate the
possibility for an intelligence explosion. The section concludes with a discussion of
the four fundamental assumptions put forward by the Machine Intelligence Research
Institute (MIRI) about machine intelligence. These claims explore the power of
general intelligence, and why this capability arising in machines does not promise a
beneficial future to humans by default.

5. Timelines: This section explores some concrete predictions of when the capabilities
discussed in the previous sections might surface. The dialogue hinges on the concept
of anchors in forecasting. This pays specific focus on determining how we can use
anchors inspired by biological systems to provide a basis for estimating the
computational requirements of AI systems.

6. Takeoff: The chapter concludes with a section that introduces the concept of takeoff
and various forms of takeoff dynamics. The dynamics involve takeoff speeds,
polarity and homogeneity. The section presents differing opinions from various
researchers on potential future scenarios.
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1.0: Foundation Models
A foundation model is any model that is trained on broad data (generally using self-supervision at
scale) that can be adapted (e.g., fine-tuned) to a wide range of downstream tasks.
- Bommasani Rishi et. al. (2022) "On the Opportunities and Risks of Foundation Models"

Large-scale research labs have been navigating towards a new machine learning (ML)
paradigm: the training of a "base model". A base model is simply a large-scale model that
serves as a building block for various applications. This model serves as a multifaceted
entity—competent across various areas but not specialized in any one.

Once there is a base, developers can retrain portions of the model using additional examples,
which allows operators to generate specialized systems adapted for specific tasks and
improve the system's quality and consistency. This is known as fine-tuning.

Fine-tuning facilitates the development of models capable of diverse downstream tasks.
Simple examples of this include fine-tuning the general purpose GPT language model to
follow instructions, or to interact in a chat format. Other examples include specializing
models for programming, scientific texts, mathematical proofs and other such tasks.

Source: Bommasani Rishi et. al. (2022) "On the Opportunities and Risks of Foundation
Models"

The costs for developing models from scratch is also increasing due to a multitude of factors.
If models were trained on the supervised learning (SL) paradigm, then the developers must
either already have a large dataset, or in scenarios where the necessary dataset does not
already exist, they must generate their own data, directing precious resources—both
monetary and temporal—toward the careful labeling of the data.

SSL (Semi-Supervised Learning) is a learning approach that combines labeled and unlabeled data
during training to improve the performance of machine learning models.
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Achieving state-of-the-art performance across numerous tasks demands that the learning
process be anchored in millions, if not billions, of examples. Foundation models provide a
solution to this by leveraging Semi-Supervised Learning (SSL). SSL algorithms use both
labeled and unlabeled data during training. This allows the models to utilize the information
present in the unlabeled examples to improve performance. The intuition behind SSL is that
the unlabeled data contains valuable information about the underlying structure of the data,
which can be used to enhance the model's generalization capabilities. By incorporating the
unlabeled data, SSL algorithms aim to learn a more robust and accurate model compared to
SL algorithms, especially when labeled data is limited or expensive to obtain. Once the
foundation model is trained, fine-tuning allows it to specialize and perform well on specific
downstream tasks by using far fewer SL labeled examples. By fine-tuning the model on a
smaller labeled dataset, the model can leverage the knowledge it acquired during SSL
training and adapt it to the specific task, resulting in overall improved performance.

Fine-tuning foundation models might be cheaper than training a model from scratch,
however the cost to train the base model itself keeps increasing. Foundation models are
extremely complex and require significant resources to develop, train, and deploy. Training
can be extremely expensive, often involving tens of thousands of GPUs running
continuously for months. These models are typically trained in specialized clusters and
using carefully designed software systems. Such dedicated clusters can be both costly and
difficult to obtain. There have also been recent efforts to mitigate the costs by training
foundation models in a decentralized manner in heterogeneous environments. For
narrowly-defined use-cases, that cost may not be justifiable, when a smaller model may
achieve similar (or better) results for a much lower price.

Pre-training in the context of foundation models refers to the initial phase where a model is trained
on a large, unlabeled dataset to learn general knowledge and patterns before fine-tuning it on specific
tasks.

Transfer learning in the context of foundation models refers to the process of leveraging knowledge
and patterns learned from a related task or domain with abundant labeled data to improve
performance on a target task or domain with limited labeled data.

Leveraging advancements in transfer learning and fine-tuning techniques, these foundation
models can be harnessed to spawn specialized models tailored for specific objectives. This
advancement amplifies the field's capacity to transfer acquired "knowledge" from one task
and apply it effectively through the fine-tuning process to a distinct downstream task. Some
notable foundation models include BERT, GPT-3, GPT-4, GATO and CLIP.
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Source: Bommasani Rishi et. al. (2022) "On the Opportunities and Risks of Foundation
Models"

This novel paradigm potentially provides a larger demographic with access to
state-of-the-art capabilities, as well as the potential to train their own models with minimal
data for highly specialized tasks. This potential access to capabilities is not guaranteed
however, does depend on the specific API options available, or on the availability of
open-sourced foundation models that the users can rely upon.

Broadly speaking, there exist significant economic incentives to expand the capabilities and
scale of foundation models. The authors of "On the Opportunities and Risks of Foundation
Models" foresee steady technological progress in the forthcoming years. Although
foundation models presently manifest most robustly in natural language processing (NLP),
this can be interpreted as a trend toward a new general paradigm of AI development. As of
January 2023, efforts by DeepMind to train a reinforcement learning (RL) foundation
model—an "adaptive agent" (AdA)—have also been undertaken. These RL agents are
trained in an open ended task space (XLand 2.0) which require different skill sets such as
experimentation, tool use or division of labor. If language-based foundation models are
general-purpose text generators, then the AdA model could conceivably be viewed as a
relatively more general-purpose task follower compared to other models observed thus far.

However, this paradigm also carries inherent risks, namely the emergence of capabilities and
homogenization.

● Homogenization: Since an increasing number of models are becoming merely
"fine-tuned" versions of foundation models, it follows that downstream AI systems
might inherit the same problematic biases prevalent in a few foundation models.
Thus, all failure categories present in the base model could potentially percolate
through all models trained with this as the foundation.

● Emergence: Homogenization could potentially provide enormous gains for many
domains, but aggressive homogenization of capabilities might result in unexpected
and unexplainable behavior arising as a function of scale. Emergence implies that a
system's behavior is implicitly induced rather than explicitly constructed. These
characteristics render the models challenging to understand. They also give rise to
unforeseen failure modes and unanticipated consequences. This phenomenon is
talked about in more detail below.
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2.0: Leveraging Computation
Although fine-tuning and transfer learning are the mechanisms that render foundation
models feasible, it is scale that makes them truly powerful. This section delves into the
concept of model scaling and the leveraging of computation—advancements in computer
hardware (e.g., GPU throughput and memory), new architectures (e.g. the transformer), and
the availability of increasing amounts of training data.

2.1: The Bitter Lesson
> The biggest lesson that can be read from 70 years of AI research is that general methods that
leverage computation are ultimately the most effective, and by a large margin. … [The bitter lesson
teaches us] the great power of general purpose methods, of methods that continue to scale with
increased computation even as the available computation becomes very great.
- Sutton, Rich (March 2019) “The Bitter Lesson”

Traditionally, AI research has predominantly designed systems under the assumption that a
fixed amount of computing power will be available to the designed agent. However, over
time, computing power so far has been expanding in line with Moore's law (number of
transistors in an integrated circuit doubles every 1.5 years). Consequently, researchers can
either leverage their human knowledge of the domain or exploit increases in
general-purpose computational methods. Theoretically, the two are mutually compatible,
but in practice, the human-knowledge approach tends to complicate methods, rendering
them less suited to harnessing general methods that leverage computation.

Several instances in history underscore this bitter lesson for AI researchers:

● Games: Deep Blue defeated chess world champion Garry Kasparov by leveraging a
vast deep search, disheartening computer-chess researchers who had pursued
methods that capitalized on the human understanding of chess's unique structure.
Similarly, AlphaGo triumphed over Go world champion Lee Sedol using deep
learning combined with a Monte Carlo tree search for move selection, eschewing
human-engineered Go techniques. Within a year, AlphaZero, forsaking any
human-generated Go data, used self-play to defeat AlphaGo. None of these
successive enhancements in game-playing capabilities hinged on any fundamental
breakthroughs in human Go knowledge.

● Vision: A similar pattern has unfolded in computer vision. Earlier methods
employed human-engineered features and convolution kernels for image recognition
tasks. However, over the years, it has been determined that leveraging more
computation and permitting convolutional neural nets (CNNs) to learn their own
features yield superior performance.

● Language & Speech: In 1970, the DARPA SUR (Speech Understanding Research)
was held. One faction endeavored to leverage expert knowledge of words,
phonemes, the human vocal tract, etc. In contrast, the other side employed newer,
more statistical methods that necessitated considerably more computation, based on
hidden Markov models (HMMs). This example shows yet again, that the statistical
methods surpassed the human-knowledge-based methods. Since then, deep learning
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recurrent neural network-based or transformer-based methods have virtually
dominated the field of sequence-based tasks.

Historically, due to repeated reminders of the bitter lesson, the field of AI has increasingly
learned to favor general-purpose methods of search and learning. This trend fortifies the
intuition behind the immense scale of the current foundation model paradigm. It can be
projected that the capabilities of the current foundation models will continue to scale
commensurately with increasing computation. The reasons for this claim are presented in
the following sections. The immediately ensuing section delves into these trends of scale in
compute, dataset size, and parameter count.

2.2: Compute trends
Several key factors dictate the relationship between the scale and capability of current ML
models:

● Compute: Extended training runs (measured in epochs) generally result in lower
loss. The total computational power needed partially depends on the training
duration. ML engineers typically aim for asymptotically diminishing returns before
halting the training process.

● Dataset size: The larger the training dataset, the more information the model can
analyze during each training run. As a result, training runs are generally longer,
which in turn increases the total computational power needed before the model can
be deemed "trained."

● Parameter Count: For each training example, the model needs to calculate the loss
and then use backpropagation to update all relevant parameters. The more
parameters the model has, the more computation-intensive this process becomes.

Below is a chart illustrating the impact of each of these three factors on model loss.1

Source: Kaplan, Jared et. al. (Jan 2020) “Scaling Laws for Neural Language Models”

With graphical processing units (GPUs), and tensor processing units (TPUs) improving in
performance and reducing in cost annually, AI models are demonstrating increasingly
impressive results. This leads to higher acceptance of substantial compute costs. The reduced
cost of computation, coupled with the paradigm of foundation models trained on escalating
volumes of data, suggests that all three variables—compute, dataset size, and parameter
count—will continue to expand in the forthcoming years. However, it remains an open
question whether merely scaling these factors will result in unmanageable capabilities.

1 Epoch AI has many more graphs of this kind.
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The following example offers a tangible illustration of capabilities escalating with an
increasing parameter count in image generation models. The same model architecture (Parti)
is used to generate an image using an identical prompt, with the sole difference between the
models being the parameter size.

350M 750M 3B 20B

Prompt: A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing on
the grass in front of the Sydney Opera House holding a sign on the chest that says Welcome Friends!

Source: GoogleAI (2022) , "Parti (Pathways Autoregressive Text-to-Image model)"

Increased numbers of parameters not only enhance image quality but also aid the network in
generalizing in various ways. More parameters enable the model to generate accurate
representations of complex elements, such as hands and text, which are notoriously
challenging. There are noticeable leaps in quality, and somewhere between 3 billion and 20
billion parameters, the model acquires the ability to spell words correctly. Parti is the first
model with the ability to spell correctly. Before Parti, it was uncertain if such an ability could
be obtained merely through scaling, but it is now evident that spelling correctly is another
capability gained simply by leveraging scale.

The following section briefly introduces efforts by both OpenAI and DeepMind to formalize
the relationships between scale and capabilities.

2.3: Scaling Laws
Scaling laws articulate the relationship between compute, dataset size, parameter count, and model
capabilities. They're employed to scale models effectively and optimally allocate resources with respect
to capabilities.

Training large foundation models like GPT is expensive. When potentially millions of dollars
are invested in training AI models, developers need to ensure that funds are efficiently
allocated. Developers need to decide on an appropriate resource allocation between - model
size, training time, and dataset size. OpenAI developed the first generation of formal neural
scaling laws in their 2020 paper “Scaling Laws for Neural Language Models”, moving away
from reliance on experience and intuition.

To determine such relationships some elements are held fixed while others are varied. As an
example data can be kept constant, while parameter count and training time are varied, or
parameter count is kept constant and data amounts are varied, etc… This allows a
measurement of the relative contribution of each towards overall performance. Such
experiments allow the development of concrete relationships that OpenAI called scaling
laws.
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These scaling laws guided decisions on trade-offs, such as: Should a developer invest in a
license to train on Stack Overflow's data, or should they invest in more GPUs? Would it be
efficient if they continue to cover the extra electricity costs incurred by longer model
training? If access to compute increases tenfold, how many parameters should be added to
the model for optimal use of GPUs? For sizable language models like GPT-3, these trade-offs
might resemble choosing between training a 20-billion parameter model on 40% of an
internet archive or a 200-billion parameter model on just 4% of the same archive.

The paper presented several scaling laws. One scaling law compares model shape and
model size, and found that performance correlates strongly with scale and weakly with
architectural hyperparameters of model shape such as depth vs. width.

Another law compared the relative performance contribution of the different factors of scale
- data, training steps, and parameter count. They found that larger language models tend to
be more sample efficient, meaning they can achieve better performance with less data. The
following graph shows this relationship between relative contributions of different factors in
scaling models. The graph indicates that for optimally compute-efficient training “most of the
increase should go towards increased model size. A relatively small increase in data is needed to avoid
reuse. Of the increase in data, most can be used to increase parallelism through larger batch sizes,
with only a very small increase in serial training time required.” As an example, according to
OpenAI's results if you get 10x more compute, you increase your model size by about 5x and
your data size by about 2x. Another 10x in compute, and model size is 25x bigger and data
size is only 4x bigger.

Source: Kaplan, Jared et. al. (Jan 2020) “Scaling Laws for Neural Language Models”

Over the following few years, researchers and institutions utilized these findings to focus on
engineering larger models rather than training smaller models on larger datasets. The
following table and graph illustrate the trend change in machine learning models' parameter
growth. Note the increase to half a trillion parameters with constant training data.

model year size (#parameters) data (#training tokens)
LaMDA 2021 137 billion 168 billion
GPT-3 2020 174 billion 300 billion
Jurassic 2021 178 billion 300 billion
Gopher 2021 280 billion 300 billion
MT-NLG 530B 2022 530 billion 270 billion
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Source: Villalobos, Pablo et. al. (Jul 2022) “Machine Learning Model Sizes and the Parameter
Gap”

In 2022, DeepMind provided an update to these scaling laws by publishing a paper called
“Training Compute-Optimal Large Language Models”. They choose 9 different quantities of
compute, ranging from about 10^18 FLOPs to 10^21 FLOPs. They hold the compute fixed at
these amounts, and then for each quantity of compute, they train many different-sized
models. Because the quantity of compute is constant for each level, the smaller models are
trained for more time and the larger models for less. Based on their research DeepMind
concluded that for every increase in compute, you should increase data size and model size
by approximately the same amount. If you get a 10x increase in compute, you should make
your model 3.1x times bigger and the data you train over 3.1x bigger; if you get a 100x
increase in compute, you should make your model 10x bigger and your data 10x bigger.

To validate this law, DeepMind trained a 70-billion parameter model ("Chinchilla") using the
same compute as had been used for the 280-billion parameter model Gopher. That is, the
smaller Chinchilla was trained with 1.4 trillion tokens, whereas the larger Gopher was only
trained with 300 billion tokens. As predicted by the new scaling laws, Chinchilla surpasses
Gopher in almost every metric.

Such finding have led to the formulation of a scaling hypothesis:

The strong scaling hypothesis is that, once we find a scalable architecture like self-attention or
convolutions, which like the brain can be applied fairly uniformly (eg. “The Brain as a Universal
Learning Machine” or Hawkins), we can simply train ever larger NNs and ever more sophisticated
behavior will emerge naturally as the easiest way to optimize for all the tasks & data. More powerful
NNs are ‘just’ scaled-up weak NNs, in much the same way that human brains look much like
scaled-up primate brains. - Gwern (2022) “The Scaling Hypothesis”

Current projections are that “the stock of high-quality language data will be exhausted soon; likely
before 2026. By contrast, the stock of low-quality language data and image data will be exhausted only
much later; between 2030 and 2050 (for low-quality language) and between 2030 and 2060 (for
images).” - Villalobos, Pablo et. al. (Oct 2022) “Will we run out of data? An analysis of the limits
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of scaling datasets in Machine Learning” So in conclusion, we can anticipate that models will
continue to scale in the near future. Increased scale combined with the increasingly
general-purpose nature of foundation models could potentially lead to a sustained growth in
general-purpose AI capabilities. The following section explores different AI capability
thresholds that we might observe if the current trends persist.
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3.0: Capabilities
This section continues the discussion around increasing AI capabilities. It focuses in
particular on certain thresholds that we might reach in the cognitive capabilities of these AI
models. This flows into a discussion around how certain thresholds when once achieved
might result in an intelligence explosion.

Capabilities refer to the overall ability of an AI system to solve or perform tasks in specific
domains. It is a measure of how well the system can achieve its intended objectives and the
extent of its cognitive power. Evaluating capabilities involves assessing the system's
performance in specific domains, taking into account factors such as available computational
resources and performance metrics. A possible element of confusion might be between
capabilities and good performance on certain benchmarks. Benchmark performance refers to
the performance of an AI system on specific tasks or datasets. These are designed to evaluate
the system's performance on well-defined tasks and provide a standardized way to compare
different AI models. Benchmark performance can be used as a proxy to assess the system's
capabilities in certain domains, but it may not capture the full extent of the system's overall
capabilities.

3.1: Capabilities vs. Intelligence
- Krakovna, Victoria (Aug 2023) “When discussing AI risks, talk about capabilities, not

intelligence”

It is worth noting that public discussions about catastrophic risks from general AI systems
are often derailed by using the word “intelligence”. People often have different definitions of
intelligence, or associate it with concepts like consciousness that are not relevant to AI risks,
or dismiss the risks because intelligence is not well-defined. This is why using the term
“capabilities” or “competence” instead of “intelligence” when discussing catastrophic risks
from AI is often better since this is what the concerns are really about. For example, instead
of “superintelligence” we can refer to “super-competence” or “superhuman capabilities”.

There are various issues with the word “intelligence” that make it less suitable than
“capabilities” for discussing risks from general AI systems:

● Anthropomorphism: people often specifically associate “intelligence” with being
human, being conscious, being alive, or having human-like emotions (none of which
are relevant to or a prerequisite for risks posed by general AI systems).

● Associations with harmful beliefs and ideologies.
● Moving goalposts: impressive achievements in AI are often dismissed as not

indicating “true intelligence” or “real understanding” (e.g. the “stochastic parrots”
argument). Catastrophic risk concerns are based on what the AI system can do, not
whether it has “real understanding” of language or the world.

● Stronger associations with less risky capabilities: people are more likely to
associate “intelligence” with being really good at math than being really good at
politics, while the latter may be more representative of capabilities that make general
AI systems pose a risk (e.g. manipulation and deception capabilities that could
enable the system to overpower humans).

● High level of abstraction: “intelligence” can take on the quality of a mythical ideal
that can’t be met by an actual AI system, while “competence” is more conducive to
being specific about the capability level in question.
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That being said, since the history of conversation on AI risks often does involve the words
“intelligence” the following section starts by giving a quick overview of a myriad of
definitions that are commonly used in the field.

3.2: Definitions of advanced AI Systems
This section explores various definitions of different AI capability thresholds. The following
list encompasses some of the most frequently used terms:

● Intelligence: Intelligence measures an agent’s ability to achieve goals in a wide range
of environments

- Legg, Shane; Hutter, Marcus; (Dec 2007) “Universal Intelligence: A Definition
of Machine Intelligence”

● Artificial Narrow Intelligence (ANI): A term designating artificial intelligence
systems that are tailored to handle a single or a limited task. These systems are
'narrow' because they tend to be superhuman at a very specific task domain.

● Transformative AI (TAI): Refers to potential future AI that triggers a transition
equivalent to, or more significant than, the agricultural or industrial revolution. This
term aims to be more inclusive, acknowledging the possibility of AI systems that
qualify as "transformative," despite lacking many abilities that humans possess.

- Karnofsky, Holden; (May 2016) "Some Background on Our Views Regarding
Advanced Artificial Intelligence"

● Human-Level AI (HLAI): Encompasses AIs that can solve the majority of cognitive
problems an average human can solve. This concept contrasts with current AI, which
is vastly superhuman at certain tasks while weaker at others.

● Artificial General Intelligence (AGI): Refers to AIs that can apply their intelligence
to a similarly extensive range of domains as humans. These AIs do not need to
perform all tasks; they merely need to be capable enough to invent tools to facilitate
the completion of tasks. Much like how humans are not perfectly capable in all
domains but can invent tools to make problems in all domains easier to solve.

AGI often gets described as the ability to achieve complex goals in complex
environments using limited computational resources. This includes efficient
cross-domain optimization and the ability to transfer learning from one domain to
another.

- Muehlhauser, Luke (Aug 2013) “What is AGI?”

● Artificial Superintelligence (ASI): “This is any intellect that greatly exceeds the
cognitive performance of humans in virtually all domains of interest".

- Bostrom, Nick (2014) “Superintelligence”

Often, these terms get used as discrete capability thresholds; that is, individuals tend to
categorize an AI as potentially an AGI, an ASI, or neither. However, it has been proposed
that it might be more beneficial to view the capabilities of AI systems on a continuous scale
rather than one involving discrete jumps. To this end, Richard Ngo proposed the (t,n)-AGI
framework, which allows for a more formal definition of continuous AGI capabilities.

13

https://arxiv.org/abs/0712.3329
https://arxiv.org/abs/0712.3329
https://www.openphilanthropy.org/research/some-background-on-our-views-regarding-advanced-artificial-intelligence/
https://www.openphilanthropy.org/research/some-background-on-our-views-regarding-advanced-artificial-intelligence/
https://aiimpacts.org/human-level-ai/
https://aiimpacts.org/human-level-ai/
https://intelligence.org/2013/08/11/what-is-agi/


3.3: (t,n)-AGI
- Ngo, Richard (May 2023) “Clarifying and predicting AGI”

A system receives the designation of "t-AGI" if it can surpass a human expert in a certain cognitive
task within the timespan 't'. A system gets identified as (t,n)-AGI if it can outdo a group of 'n'
human experts working collectively on a set of cognitive tasks for the duration 't'.

For instance, if both a human expert and an AI receive one second to perform a task, the
system would be labeled a "one-second AGI" if it accomplishes that cognitive task more
effectively than the expert. Similarly, designations of one-minute, one-month, and so forth,
AGIs could apply if their outputs surpass what human experts could achieve within a
minute, month, and so on.

Richard Ngo makes further predictions regarding the types of capabilities in which an AI
might surpass humans at different 't' thresholds.

● One-second AGI: Recognizing objects in images, determining whether sentences are
grammatical, answering trivia.

● One-minute AGI: Answering questions about short text passages or videos,
common-sense reasoning (e.g., Yann LeCun's gears problems), performing simple
computer tasks (e.g., using Photoshop to blur an image), looking up facts.

● One-hour AGI: Completing problem sets/exams, composing short articles or blog
posts, executing most tasks in white-collar jobs (e.g., diagnosing patients, providing
legal opinions), conducting therapy.

● One-day AGI: Writing insightful essays, negotiating business deals, developing new
apps, running scientific experiments, reviewing scientific papers, summarizing
books.

● One-month AGI: Carrying out medium-term plans coherently (e.g., founding a
startup), supervising large projects, becoming proficient in new fields, writing large
software applications (e.g., a new operating system), making novel scientific
discoveries.

● One-year AGI: These AIs would need to outdo humans in practically every area,
given that most projects can be divided into sub-tasks that can be completed in
shorter timeframes.

As of the third quarter of 2023, existing systems are believed to qualify as one-second AGIs,
and are considered to be nearing the level of one-minute AGIs. They might be a few years
away from becoming one-hour AGIs. Within this framework, Richard Ngo anticipates
superintelligence (ASI) to be something akin to a (one year, eight billion)-AGI, that is, an ASI
would be an AGI that takes one year to outperform all eight billion humans coordinating on
a given task.

Although AGI could be measured according to the proposed continuous framework, there
might still be abrupt jumps in capabilities due to a phenomenon known as emergence. This
topic gets explored in the subsequent section.

3.3: Formalizing Capabilities
The following two papers will be fully integrated in a future draft, for now please refer
directly to the source:
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● Situational Awareness: Owain Evans (Sep 2023) “Taken out of context: On
measuring situational awareness in LLMs”

● Power Seeking: Alexander Matt Turner (Jan 2023) “Optimal Policies Tend to Seek
Power”
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4.0: Threat Models
This section explores the question - Even if capabilities continue to increase as the previous
sections forecast, why is that even a concern? As advancements in artificial intelligence (AI)
continue, a critical analysis of their implications and potential risks becomes essential. The
hypothesis suggesting catastrophic risk from general AI, as presented so far, consists of two
key assertions:

First, global technological advancements are progressing towards the creation of generally
capable AI systems within the forthcoming few decades.

Second, these generally capable AI systems possess the potential to outcompete or
overpower humans.

The previous sections presented evidence supporting the first assertion. This section
provides arguments for the second. It first explores why a machine intelligence might
possess the capability to swiftly increase its cognitive abilities. Next, there is a discussion of
why a machine intelligence might even have motivations to expand its capabilities. Finally,
the section explores why it should not be taken for granted that a highly capable machine
intelligence will be beneficial for humans by default.

4.1: Intelligence Explosion
- Muehlhauser, Luke; Salamon, Anna (2012) “Intelligence Explosion: Evidence and

Import”

An "intelligence explosion" denotes a scenario where machine intelligence swiftly enhances its own
cognitive capabilities, resulting in a substantial advancement in ability.

Muehlhauser and Salamon delve into the numerous advantages machine intelligence holds
over human intelligence, which facilitate rapid intelligence augmentation. These include:

● Computational Resources: Human computational ability remains somewhat
stationary, whereas machine computation possesses scalability.

● Communication speed: Given the relatively low speed of neurons (only at 75 m/s),
the human brain necessitates parallelized computation algorithms. Machines, on the
other hand, operate on communications at the speed of light, which substantially
augments prospects for sequential processes.

● Duplicability: Machines exhibit effortless duplicability. Unlike humans they do not
need birth, education, or training. While humans predominantly improve
individually, machines have the potential to grow collectively.

● Editability: Machines potentially allow more regulated variations. They exemplify
the equivalent of direct brain enhancements via neurosurgery in opposition to
laborious education or training requirements.

● Goal coordination: Copied AIs possess the capability to share goals effortlessly, a
feat challenging for humans.
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4.2: Instrumental Convergence
- Bostrom, Nick (2014) “Superintelligence”

The points mentioned earlier validate the potential of machine intelligence to enhance its
cognitive capabilities. Nonetheless, an exploration into the motives behind such an ambition
remains necessary. To illustrate, consider the relationship between levels of intelligence and
the corresponding goals. This examination leads to one of two seminal theses offered by
Nick Bostrom:

Orthogonality Thesis: Intelligence and final goals are orthogonal: more or less any level of
intelligence could in principle be combined with more or less any final goal.
- Bostrom, Nick (2014) “Superintelligence”

This thesis implies that an AI system’s objectives must be aligned explicitly with human
virtues and interests, as no guarantee exists that an AI will automatically adopt or prioritize
human values. The Orthogonality Thesis doesn't suggest compatibility of all agent designs
with all goals, instead, it indicates the potential for at least one agent design for any
combination of goals and intelligence level. Consequently, if any intelligent system can be
paired with any goal, is it possible to hypothesize meaningfully about the type of goals
future AI Systems might harbor? Absolutely. This leads to Bostrom’s second thesis:

Instrumental Convergence Thesis: Several instrumental values can be identified which are
convergent in the sense that their attainment would increase the chances of the agent's goal being
realized for a wide range of final goals and a wide range of situations, implying that these
instrumental values are likely to be pursued by a broad spectrum of situated intelligent agents.
- Bostrom, Nick (2014) “Superintelligence”

A terminal goal, also known as an "intrinsic goal" or "intrinsic value”, is an objective that an
agent appreciates for its own sake. On the other hand, an instrumental goal is pursued to
increase the likelihood of achieving its terminal goals. Instrumental convergence
encompasses the notion that certain instrumental values or goals could potentially be
pursued by a broad array of intelligent agents, irrespective of their designated final goals.
The Instrumental Convergence Thesis underscores potential hazards affiliated with
sophisticated AI systems. It infers that even if an AI system’s ultimate goal appears
harmless, it could still embark on actions conflicting with human interests, owing to a
convergence of several instrumental values such as resource acquisition and potential
threats' elimination. One can categorize self-preservation, goal-content integrity, cognitive
enhancement, and resource acquisition as instrumentally convergent goals.

In the wake of Bostrom's introduction of these theses in 2014, research has been undertaken
to substantiate the existence of instrumentally convergent goals. "Optimal Policies Tend to Seek
Power", a paper by Turner et al., provides research supporting the existence of instrumentally
convergent goals in modern machine learning systems.

4.3: Emergence
Emergent behavior, or emergence, manifests when a system exhibits properties or behaviors that its
individual components lack independently. These attributes may materialize only when the
components comprising the system interact as an integrated whole, or when the quantity of parts
crosses a particular threshold. Often, these characteristics appear "all at once"—beyond the threshold,
the system’s behavior undergoes a qualitative transformation.
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The sections discussing computational trends and scaling laws showed the increasing scale
of current foundational models. Numerous complex systems in nature exhibit qualitatively
distinct behavior resulting from quantitative increases in scale. These properties, termed
'emergent', occur simultaneously. Examples of complex systems with such attributes in
nature include:

● The heart: While individual cells cannot pump blood, the entirety of the heart can.
● Uranium: Small quantities are mundane, but large amounts can initiate nuclear

reactions.
● Civilization: Individuals may seem ordinary, but through collective specialization

(different individuals focusing on skills that are irrelevant in isolation), human
civilization becomes possible. Another example of this is bees and ants. Ants have
one of the smallest brains relative to their body, but ant colonies are capable of
producing very complex behavior.

In "More Is Different for AI" Jacob Steinhardt provides additional examples of such complex
systems. Steinhardt further conjectures that AI systems will manifest such emergent
properties as a function of scale. Assuming that models persist in growing as per the scaling
laws, an unexpected threshold may soon be crossed, resulting in unanticipated differences in
behaviors and capabilities. Studying complex systems with emergent phenomena may assist
in predicting what capabilities will emerge and when. In other words, there is a possibility of
observing capability leaps between the thresholds (e.g., a sudden leap from AI to HLAI to
AGI) discussed in the preceding section, even if the models are simply scaled up.

Besides the factors already covered in the section on computational trends, the following
elements also suggest that future ML systems will differ quantitatively from current models:

● Data Storage Capacities: A decrease in the cost to store one byte per dollar.
● Few-Shot and Zero-Shot Learning: The capability to learn from fewer examples.
● Grokking: Sudden improved generalization after extended periods of training.

This further implies that these future models have the potential to manifest emergent
behavior that could be qualitatively distinct from what is observed today. In the paper
“Model evaluation for extreme risks” DeepMind found that as AI progress has evolved,
general-purpose AI systems have often exhibited new and unpredictable capabilities –
including harmful ones that their developers did not anticipate. Future systems may reveal
even more perilous emergent capabilities, such as the potential to conduct offensive cyber
operations, manipulate individuals through conversation, or provide actionable instructions
for carrying out acts of terrorism.

4.4: Four Background Claims
- Soares, Nate (July 2015) “Four Background Claims”

In the concluding part of this section, we will delve into four essential claims that lay the
groundwork for the concerns associated with ASI as put forth by MIRI.

Claim 1: Humans Exhibit General Intelligence
Humans are capable of solving an array of problems across various domains, demonstrating
their general intelligence. The importance of this claim lies in the fact that this form of
general intelligence has led humans to become the dominant species on Earth.
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Claim 2: AI Systems Could Surpass Human Intelligence
While it remains uncertain when machines might attain superior intelligence to humans, it is
conceivable that they have the potential to do so. Considering the brief evolutionary period
between chimpanzees and generally intelligent humans, we can conclude that human
intelligence is not incomprehensibly complex, suggesting we will eventually comprehend
and replicate it.

Man-made machines consistently outperform their biological counterparts (cars vs. horses,
planes vs. birds, etc.). Thus, it is rational to assume that just as birds are not the pinnacle of
flight, humans are not the apex of intelligence. Therefore, it is plausible to foresee a future
where machines out-think humans.

Claim 3: Highly Intelligent AI Systems Will Shape the Future
Historically, confrontations between human groups have often culminated with the
technologically superior faction dominating its competitor. Numerous reasons suggest that
an AI system could attain a higher intelligence level than humans, thereby enabling it to
intellectually outsmart or socially manipulate humans. Consequently, if we care about our
future, it is prudent to study the processes that could significantly influence the direction of
future events.

Claim 4: Highly Intelligent AI Systems Will Not Be Beneficial by Default
Though a sufficiently intelligent AI may comprehend human desires, this does not
inherently mean it will act in accordance with them. Moreover, even if an AI executes the
tasks as we've programmed it to — with precision and adherence to instructions — most
human values can lead to undesirable consequences when interpreted literally. For example,
an AI programmed to cure cancer could resort to kidnapping and experimenting on
humans.

This claim is critical as it indicates that merely enhancing the ability of AI systems to
understand our goals is not sufficient. The systems must also have a desire to act in
accordance with our goals. This also underscores the importance of studying and
formalizing human goals such that the intentions behind them can be properly
communicated.

5.0: Timelines & Forecasting
The previous sections have illustrated that capabilities will likely continue to increase,
potentially leading to capability jumps due to phenomena such as emergence and
intelligence explosion. This final section of the chapter investigates AI timeline forecasts and
takeoff dynamics. AI timeline forecasts entail discussing when researchers/forecasters
expect various milestones in AI development to be achieved. This includes for example
various benchmarks of progress, the emergence of mouse-level intelligence, and the
manifestation of human-like qualities in AI, such as external tool use and long-term
planning. The next section shares the insights of researchers who have gathered evidence
from domain experts regarding when these capability thresholds might be reached.

Anchors in forecasting refer to reference classes or frameworks that are used to make
predictions about future events or systems. These anchors serve as points of comparison or
analogy that help inform our understanding and reasoning about the future. There are
several common anchors used to inform predictions about the development and capabilities
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of future AI systems. These anchors provide reference points and frameworks for reasoning
about AI progress. Some of the most common anchors include:

● Current ML Systems: The current state of machine learning systems serves as a
starting point for forecasting future AI capabilities. By examining the strengths and
limitations of existing ML systems, researchers can make educated guesses about the
trajectory of AI development.

● Human Anchors: Anchors based on human abilities and characteristics are often
used in AI forecasting. These include areas where humans excel compared to current
ML systems, such as mastery of external tools, efficient learning, and long-term
planning.

● Biological Anchors: Biological anchors draw inspiration from biological systems,
particularly the human brain, to estimate the computational requirements of future
AI systems. These anchors consider factors such as the neural network anchor, which
estimates the compute-equivalent used in the human brain, and the human lifetime
anchor, which estimates the compute-equivalent involved in training a human brain
from birth to adulthood.

● Thought Experiments: Thought experiments provide a third anchor by imagining
hypothetical scenarios and reasoning through their implications. These experiments
help explore the potential behavior and characteristics of future AI systems.

It's important to note that the choice and weighting of anchors can vary depending on the
specific forecasting approach and the context of the predictions being made. Different
researchers may emphasize different anchors based on their assumptions and perspectives.
This book will only explore the biological anchor in further detail.

5.1: Biological Anchors
Biological anchors are a set of reference points or estimates used in forecasting the
development of transformative AI systems. These anchors are inspired by biological
systems, particularly the human brain, and provide a basis for estimating the computational
requirements of AI systems capable of performing transformative tasks. The draft report on
AI timelines in Sep 2020 by Ajeya Cotra details the methodology used, addressing several
questions:

1. How much computation does the human brain perform? According to the report,
the brain has an estimated 10^15 total synapses. With each synapse spiking
approximately once per second and each spike representing roughly one floating
point operation (FLOP), the brain's computational power is estimated to range
between 10^13 and 10^17 FLOP/S. This variance takes into account the potential
efficiency differences between human brains and computers.

2. How much training would it take to replicate this much inferential computation?
It's important to note that training computation differs from inferential computation.
Modern ML practices involve training advanced models on massive supercomputers
and running them on medium-sized ones. An adult human’s inference computation
power is estimated at ~10^16 FLOP/S. To account for the total training computation
costs, the report multiplies the computation of a single brain (10^15 FLOP/S) by the
time taken from childhood to adolescence (10^9 seconds). This gives a lower bound
estimate of 10^24 FLOP. However, the estimate increases to 10^41 FLOP when also
considering the training data ingrained in our biology through evolution.
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3. How can we adjust this computation estimate for algorithmic progress? An
algorithmic efficiency report suggests the training efficiency for Neural Networks
doubles every sixteen months. Cotra proposes a slightly longer doubling time of 2-3
years.

4. How much money does this amount of computation cost? In 2020, computational
resources were priced at $1 for 10^17 FLOP/S, implying that 10^33 FLOP/S would
cost $10^16 (ten quadrillion dollars). This cost decreases annually, with some
versions of Moore’s Law suggesting that compute costs halve every eighteen months.
As a result, training costs (in FLOP/S) will reduce over time due to algorithmic
progress, and the cost of FLOP/S (in dollars) will also decrease due to hardware
advancements.

5. What year does this computational cost become reasonable? The median result is a
10% chance by 2031, a 50% chance by 2052, and an 80% chance by 2100.

Cotra acknowledges potential limitations with this approach, such as the assumption that
progress relies on an easily-measured quantity (FLOP/S) rather than on fundamental
advances, like new algorithms. Therefore, even with affordable, abundant computation, if
we lack the algorithmic knowledge to create a proper thinking machine, any resulting AI
might not display human level or superintelligent capabilities.

The following graph gives an overview of the findings. Overall, the graph takes a weighted
average of the different ways that the trajectory could flow. This gives us an estimate of a
>10% chance of transformative AI by 2036, a ~50% chance by 2055, and an ~80% chance by
2100.
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Source: Holden Karnofsky (2021) "Forecasting transformative AI: the "biological anchors"
method in a nutshell"

In 2022 a two-year update on the author’s (Ajeya Cotra) timelines was published. The
updated timelines for TAI are ~15% probability by 2030, ~35% probability by 2036, a median
of ~2040, and a ~60% probability by 2050.

It's important to note that while the biological anchor is a valuable model, it is not
universally accepted as the primary predictive tool among all ML scientists or alignment
researchers. As the statistical aphorism goes: "All models are wrong, but some are useful".
Biological anchors represent just one model, and other anchors should be considered when
forming your own views on AI capabilities and the timeline for their emergence.
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6.0: Takeoff Dynamics
Takeoff dynamics primarily delve into the implications of the evolution of powerful artificial
intelligence on the world. These definitions sketch different trajectories the world could
follow as transformative AI emerges.2

While timelines address when certain capabilities may emerge, takeoff dynamics explore
what happens after these features surface. This chapter concludes with a section discussing
various researchers' perspectives on the potential trajectories of an intelligence explosion,
considering factors such as takeoff speed, continuity, and homogeneity. This includes a
discussion of - first, the pace and continuity of an intelligence explosion, and second,
whether multiple AIs will coexist, each having different objectives, or whether they will
eventually converge towards a single superintelligent entity.

Source: Open Philanthropy (June 2023) “What a compute-centric framework says about
takeoff speeds”

6.1: Speed/Continuity
Both AI takeoff speed and AI takeoff continuity describe the trajectory of AI development.
Takeoff speed refers to the rate at which AI progresses or advances. Generally, takeoff
continuity refers to the smoothness or lack of sudden jumps in AI development. Continuous

2 Jaime Sevilla and Edu Roldán from epoch.ai have developed an interactive website for
understanding a new model of AI takeoff speeds, if the reader wishes to try their own values and
estimates.
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takeoff means that the capabilities trajectory aligns with the expected progress based on past
trends, while discontinuous takeoff refers to a trajectory that significantly exceeds the
expected progress. FOOM is one type of fast takeoff scenario, and refers to a hypothetical
scenario in which artificial intelligence (AI) rapidly and explosively surpasses human
intelligence and capabilities.

The terms "slow takeoff" and "soft takeoff" are often used interchangeably, and similarly "fast
takeoff" and "hard takeoff" and “FOOM” are also often used interchangeably. It's important
to note that the definitions and implications of takeoff speed and takeoff continuity are still
subjects of debate and may not be universally agreed upon by researchers in the field. Here
are perspectives:

Slow/Soft takeoff

When discussing takeoff speeds, Paul Christiano emphasizes the parallel growth of AI
capabilities and productivity. He expects a slow takeoff in the development of AGI based on
his characterization of takeoff speeds and his analysis of economic growth rates. He defines
slow takeoff as a scenario where there will be a complete interval of several years in which
world economic output doubles before the first interval of one year in which world
economic output doubles. This definition emphasizes a gradual transition to higher growth
rates. Overall, he postulates that the rise in AI capabilities will mirror an exponential growth
pattern in the world GDP, resulting in a continuous but moderate takeoff.

In a similar vein, John Wentworth has argued that the real obstacle to global domination is
not the enhancement of cognitive abilities but more significant bottlenecks like avoiding
coordinated human resistance and the physical acquisition and deployment of resources.
These supply chain optimizations would increase productivity, hence GDP, which could
serve as a measure for the speed of "AI takeoff".

Fast/Hard takeoff

A hard takeoff refers to a sudden, rather than gradual, transition to superintelligence,
counter to the soft takeoff mentioned above. Eliezer Yudkowsky advocates for this view,
suggesting a sudden and discontinuous change brought about by rapid self-improvement,
while others, like Robin Hanson, support a more gradual, spread-out process. Yudkowsky
argues that even regular improvement of AI by humans may cause significant leaps in
capability to occur before recursive self-improvement begins.

Eliezer Yudkowsky also offers a counter to continuous takeoff proponents. He predicts a
quick and abrupt "intelligence explosion". This is because he rather doesn't expect AI to be
integrated (quickly) enough into the economy for the GDP to increase significantly faster
before FOOM. It is also possible that superintelligent AIs could mislead us about their
capabilities, leading to lower-than-expected GDP growth. This would be followed by a
sudden leap, or "FOOM", when the AI acquires a substantial ability to influence the world,
potentially overwhelming human technological and governance institutions.

These diverse views on takeoff speeds and continuity shape the strategies for AI safety,
influencing how it should be pursued. Overall it is worth emphasizing that both fast and
slow takeoffs are quite rapid (as in at most a few years). Here are some picture to help
illustrate the differences:
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Slow Continuous Takeoff Slow Discontinuous takeoff

Fast Continuous Takeoff Fast discontinuous takeoff

Source: Samuel Dylan Martin, Daniel_Eth (Sep 2021) “Takeoff Speeds and Discontinuities”

6.2: Homogeneity
Homogeneity refers to the similarity among different AI systems in play during the development and
deployment of advanced AI.

- Hubinger, Evan (Dec 2020) “Homogeneity vs. heterogeneity in AI takeoff scenarios”

In a homogenous scenario, AI systems are anticipated to be highly similar, even identical, in
their alignment and construction. For example, if every deployed system depends on the
same model behind a single API, or if a single foundational model is trained and then
fine-tuned in different ways by different actors. Homogeneity in AI systems could simplify
cooperation and coordination, given their structural similarities. It also signifies that the
alignment of the first advanced AI system is crucial, as it will likely influence future AI
systems. One key factor for homogeneity is the economic incentives surrounding AI
development and deployment. As the cost of training AI systems is expected to be
significantly higher than the cost of running them, it becomes more economically
advantageous to use existing AI systems rather than training new ones from scratch. This

25

https://www.alignmentforum.org/posts/pGXR2ynhe5bBCCNqn/takeoff-speeds-and-discontinuities
https://www.lesswrong.com/posts/mKBfa8v4S9pNKSyKK/homogeneity-vs-heterogeneity-in-ai-takeoff-scenarios


creates a preference for reusing or fine-tuning existing AI systems, leading to a higher
likelihood of homogeneity in the deployed AI landscape.

On the other hand, there are also arguments for a heterogenous takeoff. One reason is the
diversity of AI development approaches and training regimes. Different organizations and
researchers may employ distinct methodologies, resulting in AI systems with varying
degrees of alignment. Another factor is the potential for competitive dynamics and strategic
considerations among different AI projects. In scenarios where multiple projects are racing to
develop AGI, there may be a lack of coordination and information sharing, leading to
heterogeneity in the alignment of the resulting AI systems. Furthermore, the presence of
different values, priorities, and objectives across different AI development teams or
organizations can contribute to heterogeneity in AI alignment. These differences in values
and goals may lead to divergent approaches to AI development and alignment, resulting in
a heterogeneous landscape of AI systems.

6.3: Polarity
Unipolar refers to a scenario where a single agent or organization dominates and controls the world,
while multipolar refers to a scenario where multiple entities coexist with different goals and levels of
cooperation.

AI homogeneity evaluates the alignment similarities among AI systems, AI polarity
examines the coexistence of both aligned and misaligned AI systems in a given context.

We might expect a unipolar takeoff, where a single AI system or project gains a decisive
strategic advantage, due to several reasons. One key factor is the potential for a rapid
takeoff, characterized by a fast increase in AI capabilities. If one project achieves a significant
lead in AI development and surpasses others in terms of capabilities, it can establish a
dominant position before competitors have a chance to catch up. A rapid takeoff can
facilitate a unipolar outcome by enabling the leading project to quickly deploy its advanced
AI system and gain a monopoly on the technology. This monopoly can provide substantial
economic advantages, such as windfall profits, which further solidify the leading project's
power and influence. Additionally, the presence of network effects can contribute to a
unipolar takeoff. If the leading AI system becomes widely adopted and integrated into
various sectors, it can create positive feedback loops that reinforce its dominance and make
it increasingly difficult for other projects to compete.

We might expect a multipolar takeoff, where multiple AI projects undergo takeoff
concurrently, due to several reasons. One factor is the potential for a slower takeoff process,
which allows for more projects to reach advanced stages of AI development. In a slow
takeoff scenario, there is a greater likelihood of multiple projects undergoing the transition in
parallel, without any single project gaining a decisive strategic advantage. Another reason is
the possibility of shared innovations and tools among AI projects. If there is a significant
level of collaboration and information sharing, it can lead to a more distributed landscape of
AI capabilities, enabling multiple projects to progress simultaneously. Furthermore, the
presence of non-competitive dynamics, such as cooperation and mutual scrutiny, can
contribute to a multipolar takeoff. In a scenario where different AI projects recognize the
importance of safety and alignment, they may be more inclined to work together and ensure
that each project progresses in a responsible manner.
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7.0: [WIP] Extra
Data
The last trend we are going to look at is one of increasing data. Basically, we are using
ever-increasing amounts of data to train our models. The paradigm of training foundation models
to fine-tune later is accelerating this trend. If we want a generalist base model then we need to
provide it with ‘general data’ which is code for all the data we can get our hands on. You have
probably heard that models like ChatGPT and PaLM are trained on data from the internet. The
internet is the biggest repository of data that humans have. Additionally, as we observed from the
Chinchilla model it is possible that data to train our models is the actual bottleneck, and not
compute or parameter count. So the natural question is howmuch data is left on the internet for us
to keep training our models? and howmuch more data do we humans generate every year?

How much data do we generate?
The total amount of data generated every single day is on the order of ~463EB (Source: World
Economic Forum). But in this post, we will assume that models are not training on ‘all the data
generated’ (yet), rather they will continue to only train on open-source internet text and image
data. The available stock of text and image data grew by 0.14 OOM/year between 1990 and 2018
but has since slowed to 0.03 OOM/year.

How much data is left?
The median projection for when the training dataset of notable ML models exhausts the stock of
professionally edited texts on the internet is 2024. The median projection for the year in whichML
models use up all the text on the internet is 2040. Overall, projections by Epochai predict that we
will have exhausted high-quality language data before 2026, low-quality language data somewhere
between 2030 to 2050, and vision data between 2030 to 2060. This might be an indicator of
slowing down ML progress after the next couple of decades. These conclusions from Epochai, like
all the other conclusions in this entire leveraging computation section, rely on the unrealistic
assumptions that current trends in ML data usage and production will continue and that there will
be no major innovations in data efficiency, i.e. we are assuming that the amount of capabilities
gained per training datapoint will not change from current standards.
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ML data consumption and data production trends for low-quality text, high-quality text, and
images. - Source: Epoch (2023), "Key trends and figures in Machine Learning"

Time (Grokking)

Compute
The first thing to look at is the trends in overall amount of training compute required when we
train our model. Training compute grew by 0.2 OOM/year up until the Deep Learning revolution
around 2010, after which growth rates increased to 0.6 OOM/year. We also find a new trend of
“large-scale” models that emerged in 2016, trained with 2-3 OOMs more compute than other
systems in the same period.

In 2010, before the deep learning revolution, DeepMind co-founder Shane Legg predicted
human-level AI by 2028 using compute-based estimates. OpenAI co-founder Ilya Sutskever, whose
AlexNet paper sparked the deep learning revolution, was also an early proponent of the idea that
scaling up deep learning would be transformative.
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Source: Epoch (2023), "Key trends and figures in Machine Learning"

Size (Parameters)
The first thing to look at is the trends in overall amount of training compute required when we
train our model. Training compute grew by 0.2 OOM/year up until the Deep Learning revolution
around 2010, after which growth rates increased to 0.6 OOM/year. We also find a new trend of
“large-scale” models that emerged in 2016, trained with 2-3 OOMs more compute than other
systems in the same period.

In 2010, before the deep learning revolution, DeepMind co-founder Shane Legg predicted
human-level AI by 2028 using compute-based estimates. OpenAI co-founder Ilya Sutskever, whose
AlexNet paper sparked the deep learning revolution, was also an early proponent of the idea that
scaling up deep learning would be transformative.
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Source: Epoch (2023), "Key trends and figures in Machine Learning"
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In this section lets look at the trends in model parameters. The following graph shows how even
though parameter counts have always been increasing, in the new 2018+ era, we have really entered
a different phase of growth. Overall, between the 1950s and 2018, models have grown at a rate of
0.1 orders of magnitude per year (OOM/year). This means that in the 68 years between 1950 and
2018 models grew by a total of 7 orders of magnitude. However, post-2018, in just the last 5 years
models have increased by yet another 4 orders of magnitude (not accounting for however many
parameters GPT-4 has because we don't know).

Source: Epoch (2023), "Key trends and figures in Machine Learning"
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https://www.lesswrong.com/posts/CRMhhnKs7bymY4kbb/my-thoughts-on-the-ml-safety
-course

What are no free lunch theorems, and how are they important to AI Safety?

The "No Free Lunch" (NFL) theorems assert that, on average, every learning algorithm
performs equally well over all possible learning tasks. Stated differently, an algorithm that
predicts certain sequences better than chance must compensate by performing worse on
other sequences. Some people interpret these theorems to mean that fully general
intelligence is impossible, thus reducing the concern about Artificial General Intelligence
(AGI) [1].

However, such an interpretation might oversimplify the implications of the NFL theorems.
These theorems apply to the entire set of all theoretically possible sequences, which may
include fully random or deliberately deceptive sequences. If we know that the environment
in which our algorithm operates has a certain structure, the NFL results do not obstruct the
design of algorithms with superior predictive or optimization abilities [1].

Moreover, the NFL theorems are often irrelevant in real-world scenarios. For instance,
human intelligence functions effectively in the real world, suggesting that no NFL theorem
can prohibit a machine intelligence from performing at least as well as a human. Therefore,
any claim that an NFL theorem inhibits machine intelligence in general could be fallacious,
as the same reasoning could be applied to the human brain considered as a physical system
[2].

This doesn't mean that all NFL theorems are entirely irrelevant. For instance, the Second
Law of Thermodynamics can also be seen as a NFL theorem and does prohibit perpetual
motion in our universe, according to standard physics models [2].
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Critics argue that citing the NFL theorem as a counterargument to AGI's existence is a
flawed argument. This is because the theorem is formulated as a problem of predicting
random and uniformly distributed data and doesn't necessarily apply to the complexity and
diversity of real-world data and tasks an AGI might face [3].

In summary, while the "No Free Lunch" theorems have theoretical implications for machine
learning algorithms, their practical relevance to AGI and AI safety is limited and nuanced.
It's important to understand the original meaning and limitations of these theorems before
applying them to complex, real-world scenarios involving AGI [1][2][3].

What is grokking, and how is it related to deep double descent curves?
"Grokking" is a term used to describe a phenomenon observed in machine learning,
particularly in deep learning, where a model that initially overfits to training data
(performing well on training data but poorly on test data) starts to generalize correctly and
perform much better on test data after extended training. This sudden improvement in
performance is what's referred to as "grokking" [4].

The term "grokking" is evocative and brings connotations of sudden realization, although in
machine learning, this process can be very gradual [5]. The term has been used in the context
of deep learning generalization, but some researchers argue that it is not any more connected
to the "core" of deep learning generalization than other characteristics of the learning process
[5].

Deep double descent is a phenomenon in machine learning where the test error initially
decreases, then increases, and then decreases again as we increase the model size, data size,
or training time. This creates a "double descent" curve, which is distinct from the traditional
U-shaped bias-variance tradeoff curve expected under classical statistical learning theory [6].

The relationship between grokking and deep double descent curves isn't explicitly described
in the provided sources. However, both phenomena reflect the complex dynamics of deep
learning models during training. It's possible that "grokking" could occur during the second
descent of the double descent curve, where increased training or model complexity leads to
better generalization despite initial overfitting. However, this connection would require
further investigation to confirm [5][4][6].

What are the core capabilities required for an AI to be considered human level?

The definition of a "human-level" AI can vary, but generally it is considered to be an AI
system that can perform tasks as well as, or better than, a human. There are several aspects
to consider when defining "human-level" AI.

1. Performing a wide range of tasks: A human-level AI should be able to accomplish a wide
range of tasks. It doesn't necessarily have to be perfect at every task, but it should be as good
as a human overall [7]. This could include tasks such as natural language understanding,
general reasoning ability, or other capabilities that human intelligence can perform [8].

2. Comparable performance to humans: By human-level AI, it's typically meant AI with a
level of performance comparable to humans. This includes the ability to carry out most
human professions at least as well as a typical human [9].

3. Understanding and adapting to diverse skills: Human-level AI should be able to
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understand and adapt to a variety of mental skills, similar to a human. In some cases, the
first 'human-level' machine could be much better than a human in many of these skills [7].

4. Ability to generalize: A key characteristic of human intelligence is the ability to generalize
from past experience to novel situations. This suggests that a human-level AI would need to
have robust generalization capabilities [5][10][4][11].

5. Human-level conversation and understanding: A human-level AI is expected to hold
conversations and understand complex issues at least as well as an average human would
[12].

6. Task throughput: AI-technology performance metrics include both task competencies and
task throughput. A human-level AI would need to perform tasks with human-level (or
better) competence, in terms of scope and quality [13].

It's important to note that "human-level AI" is a moving target. The comparison point for
advanced AI systems should be humans who have state-of-the-art AI tools at their disposal
[14]. Additionally, the concept of "human-level" is subject to change as AI systems progress
and evolve over time [7][14].

Why would an AI smart enough to understand our preferences not also automatically care
about our values?

An AI being able to understand human preferences doesn't automatically imply that it will
care about or act on human values. This is because understanding and caring are two
separate capabilities [1]. An AI could comprehend human values quite well but may not be
motivated to act on them unless explicitly programmed to do so [2][1].

For instance, consider an AI programmed with the sole objective of maximizing the number
of paperclips in the world [1]. It could understand everything about human morality, but it
would only use that understanding to further its goal of creating more paperclips. It
wouldn't choose to change its goals because doing so wouldn't result in more paperclips [1].

Additionally, there's a risk in relying on AI to interpret and act on human preferences
because preferences can be adaptive, unreliable, or even malicious [3]. A person's
preferences may not always align with what they truly want or deserve, and may even
reflect entrenched discrimination [3]. Therefore, an AI acting purely on human preferences
may not result in ethical or prudent outcomes [3].

Moreover, human values are complex and multifaceted. They encompass more than just
preferences and include elements like love, art, knowledge, religious devotion, and more [4].
An AI may have difficulty capturing this complexity [5][4].

Human values also evolve over time and can differ significantly between individuals [6][7].
An AI would need to mediate among conflicting preferences, which can be quite challenging
[7]. Even if the AI understands our commands, it may misunderstand or misvalue our
implicit goals and intentions [2].

In a nutshell, an AI's ability to understand human values doesn't guarantee that it will care
about those values or act in a way that aligns with them. Ensuring AI alignment with human
values is a complex task requiring careful design and ongoing monitoring [8][9][2].
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● Phase transitions in emergence
● In particular, I’ll defend a version of the second species argument which claims that,

without a concerted effort to prevent it, there’s a significant chance that:
○ We’ll build AIs which are much more intelligent than humans (i.e.

superintelligent).
○ Those AIs will be autonomous agents which pursue large-scale goals.
○ Those goals will be misaligned with ours; that is, they will aim towards

outcomes that aren’t desirable by our standards, and trade off against our
goals.

○ The development of such AIs would lead to them gaining control of
humanity’s future.

● Agents vs. predictors
● meta-learning
● We can also see the potential of the generalisation-based approach by looking at how

humans developed. As a species, we were “trained” by evolution to have cognitive
skills including rapid learning capabilities; sensory and motor processing; and social
skills. As individuals, we were also “trained” during our childhoods to fine-tune
those skills; to understand spoken and written language; and to possess detailed
knowledge about modern society. However, the key point is that almost all of this
evolutionary and childhood learning occurred on different tasks from the
economically useful ones we perform as adults. We can perform well on the latter
category only by reusing the cognitive skills and knowledge that we gained
previously. In our case, we were fortunate that those cognitive skills were not too
specific to tasks in the ancestral environment, but were rather very general skills. In
particular, the skill of abstraction allows us to extract common structure from
different situations, which allows us to understand them much more efficiently than
by learning about them one by one. Then our communication skills and theories of
mind allow us to share our ideas. This is why humans can make great progress on
the scale of years or decades, not just via evolutionary adaptation over many
lifetimes.
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